Combing a hedgehog over a field

Alexey Ananyevskiy (LMU München)

A classical result in differential topology says that there are no nowhere vanishing vector fields on a 2 -sphere. One may ask a similar question in algebraic geometry: does the tangent bundle to a sphere given by the equation $x^{2}+y^{2}+z^{2}=1$ over some field k have a nowhere vanishing section? Or more generally, when does the tangent bundle on an affine quadratic $q=1$ with q being a homogeneous degree 2 polynomial have a nowhere vanishing section? We give an essentially full answer to this question assuming that the quadric $q=1$ has a rational point. In particular, the 2 -sphere $x^{2}+y^{2}+z^{2}=1$ over a field k has a nowhere vanishing vector field if and only if -1 is a sum of 4 squares in k. The proof uses a mixture of results from the motivic homotopy theory, Chow-Witt rings and some constructions from the theory of quadratic forms. This is a joint work with Marc Levine.

