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Rızacan Çiloğlu

Whenever we deal with the p-adic topology, it will be assumed to be seperated.

1 Motivating observation

We will begin by defining the Teichmüller representatives which are a functorial set of representatives of mod
p residues of a p-adically complete ring. They are the image of a certain section of the canonical projection
defined below.

Proposition 1. Let A be a p-adically complete ring with A/pA perfect. Then there exist a unique multi-
plicative map f : A/pA→ A which sections the projection.

Proof. We begin by making some observations

Lemma 2. For a, b ∈ A, if a = b mod p then we have ap = bp mod p2.

To see this notice that as b = a + px for some x, the binomial theorem implies bp = (a + px)p =
ap + p(px)ap−1 + · · ·+ ppxp. Looking at this equality mod p2 proves the claim.

More generally, the same argument shows if for a = b mod pn then we will have ap = bp mod pn+1 and
that ap

n

= bp
n

mod pn+1.

Lemma 3. Each residue class in A/pA has a unique representative which has pn-th roots for all n.

Since A/pA is perfect, for each residue class [a] mod p, there exist a unique residue class mod p [bn] :=

[a]p
−n

. This means elements in [a] admitting a pn-th root are all congruent modulo p. By previous lemma
this means they are even congruent modulo pn+1. Therefore elements admitting pn-th roots for all n must
be congruent modulo pn for all n therefore equal to each other. We can construct one such element by the
following procedure:

For n ≥ 0, let bn be a random representative of the unique residue class [a]p
−n

. Consider the sequence

(bp
n

n ). Note that as bpn+1 = bn mod p, we have bp
n+1

n+1 = bp
n

n mod pn+1. As A is p-adically complete this
represents an element. Moreover, this element has a pn-th root for all n since one can simply consider the
sequence yk := bn+k. To see why (yk)p = (bn) notice that by the first lemma as

bp
k

n+k = bn mod p⇒ bp
n+k

n+k = bp
n

n mod pn+1

Showing (yk)p
n

and (bn) represent the same element.

This finally leads us to the proof of our initial proposition as we can define the unique multiplicative
homomorphism as the one which takes each residue class to its unique representative admitting pn-th roots
for all n.

The upshot is, this section is functorial. For instance, if p is not a zero divisor in A then its elements
can be represented uniquely as a as power series

∑∞
i=0 aip

i where ai are a set of representatives of A/pA.
However if one chooses the representatives of the residue classes mod p naively, it will not be functorial,
meaning if we have a map to another p-adically complete ring it does not immediately give a map between
the power series representation. Using the image of f constructed in Proposition 1 as the representatives
would give rise to such a map thanks to their functoriality. Moreover, using the image of f representatives,
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if we figure out how to carry out the multiplication and addition it would give rise to a method to recover
a p-adically complete ring A (where p is not a zero-divisor) from the knowledge of its residues A/pA. This
hopefully will motivate the following discussion

2 Witt Scheme

Let A∞ denote the scheme representing the functor R 7→ R∞ with the product ring structure. Equivalently,
it is SpecZ[w0, · · · ] given ring scheme structure by the following maps

a(ws) :=ws ⊗ 1 + 1⊗ ws

m(ws) :=ws ⊗ ws

Let W := SpecZ[x0, · · · ]. Fix a prime number p and define a map w :→ A∞ by

w0 7→ x0

w1 7→ xp
0 + px1

...

wn 7→ xpn

0 + pxpn−1

1 + · · ·+ pnxn

Theorem 4. The ring scheme structure of A∞ induces a ring scheme structure on W , which is the unique
ring structure making w into a morphism of ring schemes.

Proof. After base change to Z[1/p], w becomes an isomorphism because we can find polynomials (with
Z[1/p] coefficients) which express wi in terms of xj for j ≤ i thus allowing us to define an inverse map. Thus,
throught the isomorphism W × Z[1/p] inherits a ring structure. Naturally, the maps which correspond to
the ring operations can be described using polynomials with coefficients in Z[1/p]. We will show that these
polynomials actually turn out to have coefficients in Z which will allow us to extend the maps defining the
ring structure from W × SpecZ[1/p] to whole W as it is separated (it is affine) and W × Z[1/p] is a dense
open subset. Therefore the maps satisfying the ring axioms in the dense open subset will imply they satisfy
it globally (To see why, notice that the locus of agreement of two scheme maps f, g : X → Y is closed given
X is separated).

By a slight abuse of notation, we will denote by wn(x) the polynomial that takes x0, · · · , xn to wn as
defined above. Given a polynomial in two variables Φ with integral coefficients, as discussed above, we can
find polynomials ϕn(x0, · · · , xn;x′0 · · ·x′n) with coefficents in Z[1/p] such that for every n

Φ(wn(x), wn(x′)) = wn(ϕ0(x, x′), · · · , ϕn(x, x′)) (1)

Proposition 5. The coefficients of ϕn are integral

Proof. We need a small lemma

Lemma 6. Let R be a ring. If ri ≡ si mod pR, then wn(r) ≡ wn(s) mod pn+1R.

This follows immediately from the observation made about the Frobenius in the previous section and the
definition of wn.

Now armed with the lemma, we proceed by strong induction. The proposition is true for n = 0 trivially.
Assume that the proposition is true for i < n.

wn(x) = wn−1(xp) + pnxn (please excuse the abuse of notation, should be clear what is meant by xp.).
By solving for ϕn(x, x′) from 1 we get

ϕn(x, x′) =
Φ(wn(x), wn(x′))− wn−1(ϕn−1(X,X ′)p)

pn
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(Note that this is actually the recursive formula with which ϕ’s are defined.). If we show Φ(wn(x), wn(x′)) ≡
wn−1(ϕ(x, x′)p mod pn then we will be done. In the left hand side, we will substitue wn(x) = wn−1(xp) +
pnxn as before. However this time we can discard pnXn as we are interested in it mod pn. Then

Φ(wn(x), wn(x′)) ≡ Φ(wn−1(xp), wn−1(x′p)) mod pn

Using 1 once again we see that

Φ(wn(x), wn(x′)) ≡ wn−1(ϕ(xp, x′p)) mod pn

As ϕi(x
p, x′p) ≡ ϕi(x, x

′)p mod p by the Frobenius, our lemma finishes the proof.

Given a ring R we will define the ring of Witt vectors (with respect to p) over R as HomSch(SpecR,W )

3 Recovering A from A/pA

Consider again a p-adically complete ring A with A/pA perfect. With notation as in the last section we have

Theorem 7. For all pair of sequences (xi) and (x′i) with xi, x
′
i ∈ A/pA we have

Φ

(
(
∑
i

f(xp−i

i )pi), (
∑
i

f(x′i
p−i

)pi)

)
= f(ϕ0(x0, x

′
0)) + · · ·+ pif(ϕi(x, x

′)p
−i

) + · · ·

Proof. It suffices to show the equality hold mod pn+1 for every n ∈ N. Fix some n. Substitute yi := xi
p−n

,

y′i := x′i
p−n

. What we want to prove is

Φ

(
(

n∑
i

f(yi
pn−i

)pi), (

n∑
i

f(y′i
pn−i

)pi)

)
≡ f(ϕ0(y0, y

′
0)p

n

)+pf(ϕ0(y, y′)p
n−1

) · · ·+pnf(ϕn(y, y′)p
−n

) mod pn+1

However notice that right hand side can then be rewritten as wn(f(ϕ(y, y′))) and left hand side can be
rewritten as Φ(wn(f(y)), wn(f(y′)))) = wn(ϕ(f(y), f(y′))). As per our lemma from the last section, to show
the equivalence mod pn+1 it will suffice to show the equivalence f(ϕi(y, y

′)) ≡ ϕ(f(y), f(y′)) mod p. But
this is immediate since by construction f respects the congruence class mod p.

This whole discussion shows that A ∼= HomSch(SpecA/pA,W ) by an isomorphism. Explicitly, it is the
map

Θ : (x0, x1, · · · ) 7→
∑
i

f(xi)
p−i

pi

Above theorem shows that it is actually a ring map. The inverse map is given by mapping a sum to the
sequence composed of the coefficients. From the explicit description of W , arguing along the same lines,
one can show that given a perfect Fp algebra R, the ring of Witt vectors over it is a complete ring where
p is not a zero-divisior and its residues mod p is precisely R. Furthermore the functors HomSch(•,W ) and
•/ • p turn out to be quasi-inverses considered between the category of perfect Fp algebras and the category
of p-adically complete rings with perfect residues mod p, flat over Zp.

4 Some endomorphisms

There is an endomorphism (as a scheme) of W given by Xn 7→ Xn−1 where for n = 0 X0 is just sent to 0.
In the level of A valued points this is just the map (a0, a1, · · · ) 7→ (0, a1, a2, · · · ). Now, when working over
SpecZ[1/p], after passing through the isomorphism to A∞ transforms the map is transformed to wn 7→ pwn−1
which clearly is additive, thus by repeating the previous arguments it must be additive for W as well. For
evident reasons, it is called Verschiebung (shift) map and denoted V .

Over Fp the Frobenius induces by functoriality an endomorphism (as a ring scheme this time) of W . This
will be denoted F . Equivalently it is the map given by xn 7→ xp

n.
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Proposition 8. V F = p = FV

Proof. Notice we can always write an Fp algebra as a quotient of a polynomial ring, which embeds into a
perfect ring (for example, its own perfection). Therefore it will suffice to prove it only for perfect Fp algebras.
But in that case we know there is an isomorphism between the power series Θ.

Θ(FV (x)) =

∞∑
i=0

f(xp−i

i )pi+1 = pΘ((x)) = Θ(p(x))

.

5 Truncations

The n-Truncated Witt vectors are the points of coker(V n : W →W ). They are denoted by Wn. Equivalently,
they are the ring schemes obtained by repeating this story but only for a finite amount of variables. The
canonical maps Wn → Wn−1 are given by the inclusion Z[x0, · · · , xn−1] → Z[x0, · · · , xn]. This naturally
forms a direct system and we have

colimn Wn = W

.

6 Bonus definition for perfect Fp algebras

Given an Fp algebra R, turns out the Frobenius induces the 0 endomorphism on the cotangent complex
LR/Fp

. This is essentially because Frobenius induces the zero map on Ω1
R/Fp

. If R is perfect, then as

Frobenius is an isomorphism, so is the induced map 0 meaning LR/Fp
= 0. This then tells us, there is a

unique flat lift of R over Zp. The Witt vectors turn out to be one such lift (They are torsion free and Zp is
a PID). Therefore, this can be taken as an equivalent definition of the Witt vectors, at least in the case of a
perfect Fp algebra.

7 Witt Vector Affine Grassmannian

Let me conclude with statement of the theorem we are trying to understand.

Theorem 9. For G = GLn the functor GrWaff,[a,b] on perfect rings R is the set of W (R) lattices Λ ⊂
(W (R)[1/p])n such that

pbW (R)n ⊂ Λ ⊂ paW (R)n

This functor is representable by perfection of a projective variety over Fp. Consequently GrWaff the set of
lattices without any bounds is representable by an inductive limit of perfections of projective varieties.
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