
NOTES ON THE h-TOPOLOGY

ARIYAN JAVANPEYKAR

These are notes written for my talk (26.10.2021) at the seminar on Bhatt-Scholze’s paper [BS17] on the
affine Witt Grassmannian in Mainz. The topic of my talk is the h-topology, and focuses on Proposition
2.8 in [BS17]. The latter is a characterization of h-sheaves (i.e., set-valued sheaves for the h-topology on
the category of finitely presented S-schemes with S a qcqs scheme).

Inaccuracies are all mine of course. Comments and questions more than welcome.

1. Universal submersions

Following Voevodsky [Voe96], we introduce the following terminology.

Definition 1.1. A continuous map of topological spaces f : X → Y is a submersion if it is surjective
and Y has the quotient topology, i.e., a subset U ⊂ Y of Y is open if and only if f−1(U) is open in X.

Example 1.2. If f : X → Y is an open and surjective continuous map of topological spaces, then f is
a submersion. Similarly, if f : X → Y is a closed and surjective continuous map of topological spaces,
then f is a submersion.

Definition 1.3. A morphism of schemes f : X → Y is a submersion (in the Zariski topology) if the
underlying map of topological spaces |X| → |Y | is a submersion. A morphism of schemes f : X → Y is
a universal submersion if, for every morphism of schemes T → Y , the morphism fT : X ×Y T → T is a
submersion.

Note that a (universal) submersion is surjective (by definition). Moreover, the base change of a uni-
versal submersion is a universal submersion. Furthermore, the composition of two universal submersions
is a universal submersion.

We start with a very silly example.

Example 1.4 (Silly). Let f : X → Y be a morphism of schemes. Then X t Y → Y is a universal
submersion. Indeed, if U ⊂ Y is a subset, then its inverse image is given by f−1U t U . If its inverse
image f−1U t U is open, then obviously U is open, as required. (This example actually led to some
confusion during the talk.)

Example 1.5. If f : X → Y is an fppf morphism of schemes, then f is a universal submersion. Indeed,
recall that fppf morphisms are universally open (i.e., for every morphism of schemes T → Y , the morphism
X ×Y T → T is open); see [Sta15, 01UA]. Since f is surjective, the claim follows from Example 1.2

Example 1.6. If f : X → Y is a proper surjective morphism, then f is a universal submersion. Indeed,
proper morphisms are universally closed, so that the claim follows from Example 1.2.

How would one construct a non-submersive morphism of schemes? Well, one has to start by avoiding
flat morphisms, so one could consider blow-ups. But these are proper and surjective. The idea is then to
simply remove points from a blow-up to force non-properness.

Example 1.7. Let k be a field. Let X ′ be the blow-up of A2
k in its origin. Let E ∼= P1

k be the exceptional

locus of X ′ → A2. Let C be a smooth irreducible curve in A2 passing through the origin, and let C̃
be its (unique) lift to X ′. Note that the intersection of C̃ and E consists of precisely one point, say e.
Define X := X ′ \{e} and Y := A2

k. We claim that the morphism f : X → Y is not a submersion. Indeed,
consider the subset U := C \ {0} in Y = A2. Note that U is not closed. However, its pull-back f−1U



to X is given by C̃ \ {e}. This is closed in X, as it equals C̃ ∩ X and C̃ is closed in X ′. This proves
the claim. (More generally, if Z ⊂ Y is a closed subset and U is a dense open of the blow-up BlZ(Y ) of
Y along Z, then the morphism U → Y is a submersion if and only if U = BlZ(Y ). This is proven in a
similar fashion; see [Voe96] for details.)

A simpler (and possibly simplest) example (with non-integral schemes) of a surjective non-submersive
morphism is the following:

Example 1.8. The morphism X := A1 \ {0} t {0} → A1 is not a submersion. Indeed, the inverse image
of A1 \ {0} is closed, whereas A1 \ {0} is not closed in A1. (Or: the inverse image of the non-open point
0 ∈ A1 in X is open.)

2. Valuation rings (briefly)

We recall the basic definitions and give some relevant examples.

Definition 2.1. Let K be a field, and let A,B ⊂ K be local rings contained in K. We say that B
dominates A if A ⊂ B and mA = mB ∩A. We say that a ring A is a valuation ring if A is a local domain
and A is maximal for the relation of domination among local rings contained in Frac(A).

The following two lemmas give a useful characterisation of valuation rings; see [Sta15, 00I8]

Lemma 2.2. Let A be a valuation ring with fraction field K. Let x ∈ K×. Then x ∈ A or x−1 ∈ A.

Lemma 2.3. A subring A of a field K such that, for all x in K×, we have that either x ∈ A or x−1 ∈ A
(or both) is a valuation ring with fraction field K.

Note that every field is a valuation ring (with this definition), and that discrete valuation rings are
valuation rings. In fact, if A is a noetherian valuation ring, then A is either a field or a discrete valuation
ring. Examples of non-noetherian valuation rings are ubiquitous. For example, the valuation ring asso-
ciated to the (extension of the) p-adic valuation on the algebraic closure Qp of Qp is a non-noetherian
valuation ring.

Definition 2.4. An extension of valuation rings is a faithfully flat morphism V →W of valuation rings.
Equivalently, an injective local homomorphism V →W of valuation rings.

The main example of an extension of valuation rings in this seminar will be the perfection V → V perf

of a valuation ring V of characteristic p > 0. Non-examples of extensions of valuation rings are Zp ⊂ Qp

which is (injective, but not local), and the morphism Zp → Z/pZ (which is local, but not injective).

3. v-covers

We start with the definition of Bhatt-Scholze [BS17, §2]

Definition 3.1. A morphism of qcqs schemes f : X → Y is a v-cover if, for every valuation ring V
and every morphism SpecV → Y , there is an extension of valuation rings V → W and a morphism
SpecW → X such that the diagram

SpecW

extension

��

// X

f

��
SpecV // Y

commutes.

Remark 3.2. Note that a v-cover is surjective. Indeed, let X → Y be a v-cover, and let y ∈ Y be
a point with residue field k := k(y). Note that k is a valuation ring. Then, by definition, there is an
extension of valuation rings k →W and a morphism SpecW → X lifting the morphism y : Spec k → Y .
In particular, if x is the image of SpecK(W )→ SpecW → X, then x lies in the fibre Xy.
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The base change of a v-cover is a v-cover (use the universal property of pull-back and the definition
of v-covers). Furthermore, the composition of two universal submersions is a universal submersion (use
that the composition of extensions of valuation rings is an extension of valuation rings).

Intuitively, a morphism is a v-cover if and only if it is surjective on valuation rings (and not just on
points). That is, valuation rings in the target ”lift” to valuation rings in the domain.

Definition 3.3. A refinement of a v-cover f : X → Y is a v-cover X ′ → Y which factors over f .

To check descent conditions for presheaves in some Grothendieck topology, one may (sometimes) pass
to refinements. This will be made more precise below.

We start again with a silly example.

Example 3.4 (Silly). Let X → Y be a morphism of qcqs schemes. Then the morphism X t Y → Y is
(quite obviously) a v-cover.

We now show that proper surjective morphisms (resp. fppf morphisms) are v-covers.

Lemma 3.5. Let f : X → Y be a surjective universally closed morphism of qcqs schemes. Then f is a
v-cover. (Actually, it suffices to assume f is surjective and universally specializing.)

Proof. Let V be a valuation ring with fraction field K and let SpecV → Y be a morphism. To show
that there is an extension V → W and a morphism SpecW → X lifting the morphism SpecV → Y , we
may and do assume that Y = SpecV . (Indeed, we can replace f by XV → SpecV , as the latter is still
surjective and universally closed.) Since X → Y is surjective (on points), there is a field extension L/K
and a morphism SpecL→ X such that

SpecL

��

// X

��
SpecK

generic point // SpecV

commutes. Let η be the image of SpecL→ X, and note that f(η) is the generic point ηV of SpecV . Since
f : X → Y is closed, we have that specializations lift; see [Sta15, 0066]. Thus, the specialization from ηV
to the special point sV of SpecV lifts to X along f , i.e., there is a point s in X such that η specializes to
s in X and f(s) = sV . Now, let W be a valuation ring and let SpecW → X be a morphism such that the
generic point ηW of SpecW maps to η and the special point sW of SpecW maps to s; such data exists
by [Sta15, 01J8]. To conclude the proof, note that the composed morphism SpecW → X → SpecV
is dominant (as its image contains the generic point of SpecV ) and that the special point of SpecW
maps to the special point of SpecV (by construction). In particular, V → W is injective and local, as
required. �

Example 3.6. By Lemma 3.5, a proper surjective morphism is a v-cover. (Note that Lemma 3.5 requires
no separatedness nor finite type assumptions.)

Lemma 3.7. Let f : X → Y be a suirjective universally generalizing morphism of qcqs schemes. Then
f is a v-cover. In particular, faithfully flat (not necessarily locally finitely presented) morphisms are
v-covers.

Proof. The proof is similar to the proof of Lemma 3.5.
Let V be a valuation ring with residue field κ and let SpecV → Y be a morphism. As in the proof of

Lemma 3.5, we may and do assume that Y = SpecV to show that there is an extension V → W and a
morphism SpecW → X lifting the morphism SpecV → Y . Now, since X → Y is surjective (on points),
there is a field extension `/κ and a morphism Spec `→ X such that

Spec `

��

// X

��
Specκ

special point // SpecV
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commutes. Let s be the image of Spec `→ X, and note that f(s) is the special point sV of SpecV . Since
f : X → Y is generalizing by assumption [Sta15, 03HV], there is a point η in X such that s generizes to η
in X and f(η) = ηV . Now, let W be a valuation ring and let SpecW → X be a morphism such that the
generic point ηW of SpecW maps to η and the special point sW of SpecW maps to s; such data exists
by [Sta15, 01J8]. To conclude the proof, note that the composed morphism SpecW → X → SpecV
is dominant (as its image contains the generic point of SpecV ) and that the special point of SpecW
maps to the special point of SpecV (by construction). In particular, V → W is injective and local, as
required. �

Example 3.8. By Lemma 3.7, an fppf morphism is a v-cover. Also, by [Sta15, 040F], a surjective
universally open morphism is a surjective universally generalizing morphism, and thus a v-cover (by
Lemma 3.7).

Remark 3.9 (v-covers are neither generalizing nor specializing in general). Let X be an integral surface
over a field k, and let x be a point of codimension one. Then Y := X t {x} → X is a v-cover. However,
this morphism is neither generalizing nor specializing. (Indeed, let η be the generic point of X, so that x
generizes to η. Take s := x in the complement of X in Y . Then, s does not generize to any point lying
over η. Similarly, let x0 6= x be in the closure of x ∈ X, so that x specializes to x0. Then, there is no
point in the closure {s} of {s} lying over x0.) Interestingly though, a morphism is a v-cover if and only
if it is “universally weakly-generalizing”; see Proposition 4.4.

How would one go about constructing (surjective) morphisms which aren’t v-covers? Well, as in the
case of universal submersions, the above shows that we have to avoid both proper and flat morphisms.

Example 3.10. (Similar to Example 1.7] Let k be a field. Let X ′ be the blow-up of A2
k in its origin.

Let E ∼= P1
k be the exceptional locus of X ′ → A2. Let C be a smooth irreducible curve in A2. Define

V = OC,0 to be the local ring of C at the origin (in A2). Let C̃ be the unique lift of C to X ′ and let e be

the unique point of C̃ lying on the exceptional locus of X ′ → A2. Then, the unique lift of SpecV → A2
k

to a morphism SpecV → X ′ sends the special point of SpecV to e. In fact, if V → W is an extension
and SpecW → X ′ is a lift of SpecV → A2, then the special point of SpecW maps to e. This shows that
X := X ′ \ {e} → A2

k is not a v-cover.

As in the section on universal submersions, the simplest example of a surjective morphism which is
not a v-cover is given by the following

Example 3.11. The morphism f : X := A1 \ {0} t {0} → A1 =: Y is not a v-cover. Indeed, let
V = OA1,0 be the local ring of the affine line at 0, and note that this is a discrete valuation ring. Consider
the natural morphism SpecV → A1. There is clearly no extension V → W such that the composed
morphism SpecW → SpecV → A1 factors over f : X → Y .

4. The subtle difference between v-covers and universal submersions

The way we have presented universal submersions and v-covers, it should be clear that these notions
are closely related, and possibly even equivalent to one another. For example, we have the following

Lemma 4.1. Let f : X → Y be a morphism of qcqs schemes. If f is a v-cover, then f is a universal
submersion.

Proof. See Proposition 2.13 in [BM21] for a proof. We explain the idea. First, since v-covers are stable
by base-change, it suffices to show that f is a submersion.

To show this, let U ⊂ Y be a subset, and let V := f−1U be its inverse image. Assume that V is open
in X, so that V is stable under generization. Let us show that U is stable under generization. Thus, let
s ∈ U and let η ∈ Y specialize to s (so that s generizes to η). Choose a valuation ring V and a morphism
SpecV → Y such that the generic point of SpecV maps to η and the special point of SpecV maps to s.
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Since f is a v-cover, there is an extension V →W and a morphism SpecW → X such that

SpecW

��

// X

��
SpecV // Y

commutes. Now, let η′ be the image the generic point of SpecW in X and let s′ be the image of the
special point of SpecW in X. Note that s′ lies in V , as f(s′) = s lies in U . Moreover, since s′ generizes to
η′ (true?) and V is stable under generization, we conclude that η′ lies in V . This implies that η = f(η′)
lies in f(V ) = U , so that U is stable under generization.

We warn the reader that v-covers are not necessarily generalizing or specializing (Remark
3.9). The above line of reasoning does however show that v-covers are “weakly generalizing”
and “weakly specializing”; see Remark 4.3 for a brief discussion.

Now, if X → Y is finitely presented, it follows from Chevalley’s theorem that the image U of V is a
constructible set (in the Zariski topology). Since a constructible set which is stable under generization is
open, this concludes the proof (assuming X → Y is finitely presented).

If one wants to prove the lemma without making any additional finiteness hypothesis on f , then one
has to avoid Chevalley’s theorem. Here is how Bhatt-Mathew argue:

First, to prove that U is open in Y , we may and do assume that Y is affine. Since f is surjective
(Remark 3.2), it is a quotient for the constructible topology (as any continuous surjection of quasi-compact
Hausdorff totally disconnected topological spaces is a quotient map). Therefore, as V = f−1U is Zariski
open (hence open in the constructible topology), it follows that U is open in the constructible topology.
Since U is stable under generization and open in the constructible topology, it follows that U is open in
Y by applying [Sta15, 0903].

Actually, there is also the possibility of invoking [Sta15, 0ETP]. �

Remark 4.2. Rydh defines a morphism to be universally subtrusive if after each base-change it is a
submersion in the constructible topology and the S-topology. (Being a submersion in the S-topology
is the same as being “weakly-specializing”.) By Theorem 2.8 in Rydh, a morphism of qcqs schemes is
universally subtrusive if and only if it is v-cover. Lemma 4.1 thus implies that a universally subtrusive
morphism is a universal submersion. However, one can also prove this directly using the definition.
(Details omitted for now.)

Remark 4.3. Let X → Y be a v-cover (hence surjective). Although f might not generalizing or
specializing (Remark 3.9), the proof of Lemma 4.1 shows that, given a point η in Y and a point s in
its closure (so that η specializes to s), there exists a point s′ over s and a point η′ over η such that η′

specializes to s′ (and s′ generizes to η′). This is why one might say that f is “weakly-specializing” and
“weakly-generalizing”. It is interesting to note that a converse statement also holds.

Proposition 4.4. Let f : X → Y be a morphism of qcqs schemes. Then f is a v-cover if and only if f
is ”universally weakly-specializing”, i.e., for every scheme Z → Y and every point η in Z and every s in
Z with s ∈ {η}, there exists a point η′ in X×Y Z and a point s′ in X×Y Z such that f(η′) = η, f(s′) = s

and s′ ∈ {η′}.

Proof. (See also [Sta15, 0ETN].) We have already seen in the proof of Lemma 4.1 (as explained in Remark
4.3) that a v-cover is ”universally weakly-specializing”. Now, assume that for every scheme Z → Y and

every point η in Z and every s in Z with s ∈ {η}, there exists a point η′ in X ×Y Z and a point s′ in

X ×Y Z such that f(η′) = η, f(s′) = s and s′ ∈ {η′}. Let V be a valuation ring and let SpecV → Y be
a morphism. Then XV → SpecV is ”weakly-specializing”. Thus, there is a point η lying over ηV and a
point s lying over sV such that η specializes to s in XV . By the fact that local rings are dominated by
valuation rings (see [Sta15, ]), there is a valuation ring W and a morphism SpecW → X such that ηW
is mapped to η and sW is mapped to s. The compositie SpecW → XV → SpecV induces an inclusion
V →W which is an extension of valuation rings (by construction). This shows that f is a v-cover. �
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There is a subtle difference between being a universal submersion and being a v-cover, as the following
example shows.

Example 4.5 (Example 4.3 in [Ryd10]). Let V be a valuation ring of rank two, and write SpecV =
{x0 ≤ x1 ≤ x2}. (This means that x2 specializes to x1 and x1 specializes to x0.) Then, we may choose
elements s, t ∈ V such that Spec(V/s) = {x0, x1} and Spec(Vt) = {x1, x2}. Let S′ = Spec(V/s × Vt) =
Spec(V/s) t Spec(Vt).

We first note that the natural morphism S′ → S is not a v-cover. Indeed, suppose that S′ → S is
a v-cover. Then, there is an extension V → W and a morphism SpecW → S′ over S. Since SpecW
is connected, its image in S′ is connected. Therefore, SpecW → S′ factors over either Spec(V/s) or
Spec(Vt). Since neither Spec(V/s) nor Spec(Vt) surject onto Spec(V ) this leads to a contradication.
Thus, S′ → S is not a v-cover.

Now, we claim that S′ → S is a finitely presented universal submersion. Clearly, the morphism is
finitely presented, thus it suffices to show that S′ → S is a universal submersion. We give two proof
sketches.

First, to check that S′ → S is a universal submersion, we may use Theorem 2.8.(ii) of [Ryd10]. This says
that (the quasi-compact morphism) S′ → S is universally submersive if (and only if), for any valuation
ring A and morphism SpecA → S (i.e., morphism V → A), the pull-back S′ ×S SpecA → SpecA is
submersive. To show this, we suppose that V = A for simplicity. Let Z ⊂ SpecV be one of the eight
possible subsets and assume f−1Z is closed in S′. One can now check by hand that Z must be closed.
(Details omitted.)

Another possibility is to invoke Ferrand’s theorem on push-outs or to invoke [Sta15, 0EU8].

There is however no difference between v-covers and universal submersions when working with noe-
therian schemes by the following theorem of Rydh.

Theorem 4.6 (Rydh). Let f : X → Y be a morphism of qcqs schemes. Assume that Y is noetherian.
Then f is a v-cover if and only if f is a universal submersion.

The proof of this theorem is given in [Ryd10]. Example 4.5 shows that the statement is false without
the assumption that Y is noetherian.

Remark 4.7. The following result of Rydh and Bhatt-Mathew [BM21, Proposition 2.19] is interesting
to note, as it makes no noetherianity assumption: A morphism X → Y of qcqs schemes is an arc-cover
if and only if it is universally spectrally submersive. (We omit definitions; see [BM21].)

5. The h-topology

Let S be a qcqs scheme and let (Sch/S)fp be the category of finitely presented schemes over S. Note
that each object of this category is a qcqs scheme. The h-topology on (Sch/S)fp is the Grothendieck
topology generated by finitely presented v-covers.

Remark 5.1. If S is noetherian, then Voevodsky defined the h-topology using finite type universal
submersions. By Theorem 4.6, this coincides with the definition of the h-topology above when S is
noetherian. In general, by Example 4.5, the topology on (Sch/S)fp generated by finitely presented
universal submersions does not coincide with the h-topology (as defined above).

We refer to coverings in the h-topology as h-coverings. If a presheaf F on (Sch/S)fp is a sheaf for
the h-topology, we say that F is an h-sheaf. Our goal is to understand what it means to be an h-sheaf.
As the following example shows, the property of being an h-sheaf is quite restrictive, as the ”structure
sheaf” is not an h-sheaf.

Example 5.2. The sheaf O = HomS(−,A1
S) is not an h-sheaf; see [Sta15, Tag 0EV0]. Indeed, a

finitely presented nilimmersion X → Y is an h-covering, as it is a proper surjective morphism (of finite
presentation). Assume that F is an h-sheaf. Then the descent condition for X → Y is that F (Y )→ F (X)
is injective and that its image in F (X) is the equalizer of the two maps from F (X) to F (X ×Y X). Note
that X ×Y X = X. Thus, the equalizer of the two maps from F (X) to F (X ×Y X) is F (X). Thus,
F (Y ) = F (X). This equality obviously fails for O. (E.g., X and Y affine and X → Y not an isomorphism)
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Part of this seminar is dedicated to understanding the sheafification of O when S = Fp. We will see that
the h-sheafification of O is the sheaf Operf which assigns to each scheme X over Fp the perfection
O(X)perf of O(X).

Let S be a qcqs scheme and let F be an h-sheaf on (Sch/S)fp. The sheaf F has two important
properties.

(1) F is an fppf sheaf.
(2) Let Y be an affine scheme of finite presentation over S, let X → Y be a proper surjective

morphism of finite presentation, let Z ⊂ Y be a finitely presented closed subset with preimage
E in X such that X → Y is an isomorphism over Y \ Z. Then, the following (commutative)
diagram

F (Y ) //

��

F (X)

��
F (Z) // F (E)

is a pull-back square (i.e., Cartesian).

Let us prove these two properties. First, note that fppf coverings are h-coverings, so that 1) is clear.
To prove 2), we follow the first (”easy”) part of the proof of Proposition 2.8 in Bhatt-Scholze [BS17].
Since X → Y is proper surjective finitely presented, it is an h-covering. Thus, F (Y ) is the equalizer of
F (X) ⇒ F (X ×Y X). Note that, X t E ×Z E → X ×Y X is an h-covering as well. Therefore, we see
that

F (Y ) = eq(F (X) ⇒ F (X ×Y X))

= eq(F (X) ⇒ F (X t E ×Z E))

= eq(F (X) ⇒ F (X)× F (E ×Z E))

= eq(F (X) ⇒ F (E ×Z E)).

We can now use this description of F (Y ) to prove that the diagram above is Cartesian. Details omitted
(see the first paragraph of the proof of [BS17, Proposition 2.8]). �

The Main Theorem of this talk is Proposition 2.8 in Bhatt-Scholze [BS17].

Theorem 5.3 (Main Theorem). Let F be a presheaf on (Sch/S)fp. Then F is an h-sheaf if and only if
the following two statements hold.

(1) F is an fppf sheaf.
(2) Let Y be an affine scheme of finite presentation over S, let X → Y be a proper surjective

morphism of finite presentation, let Z ⊂ Y be a finitely presented closed subset with preimage
E in X such that X → Y is an isomorphism over Y \ Z. Then, the following (commutative)
diagram

F (Y ) //

��

F (X)

��
F (Z) // F (E)

is a pull-back square (i.e., Cartesian).

To prove Theorem 5.3, we will invoke structure theorems for h-coverings. In fact, it turns out that,
up to refinement, an h-covering factors into the composition of fppf morphisms and ”blow-ups” as in 2)
above.
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6. Two structure theorems

Our first structure theorem is due to Rydh (in the non-noetherian case).

Theorem 6.1 (Rydh, Voevodsky (noetherian case)). Let f : X → Y be a finitely presented v-cover,
where Y is an affine scheme. Then, there is a refinement X ′ → Y of f which factors as a quasi-compact
open covering X ′ → Y ′ and a proper surjective morphism Y ′ → Y of finite presentation.

Proof. See [Ryd10]. �

To state the second structure theorem, we will require a definition.

Definition 6.2. Let f : X → Y be a proper surjective morpism of finite presentation between qcqs
schemes. Let n ≥ 0 be an integer.

(1) We say that f is of inductive level 0 if f has a refinement X ′ → Y which factors as X ′ → Y ′ → Y ,
where X ′ → Y ′ is proper fppf and Y ′ → Y is a finitely presented nilimmersion.

(2) We say that f is of inductive level ≤ n if f has a refinement X ′ → Y which factors as

X ′ → X0 → Y0 → Y,

where X ′ → X0 is proper fppf, Y0 → Y is a finitely presented nilimmersion, and X0 → Y0 is
a proper surjective morphism of finite presentation which is an isomorphism outside a closed
finitely presented subset Z ⊂ Y0 such that X0 ×Y0 Z → Z is of inductive level ≤ n− 1.

It turns out that every proper surjective morphism is of inductive level ≤ n for some n. More precisely,
we have the following.

Proposition 6.3. Let Y be a reduced finite type scheme over Z, and let f : X → Y be a proper surjective
morphism. Then f is of inductive level ≤ dim(Y ).

Proof. We argue by induction on dimY . First, if dimY = 0, then Y is the spectrum of a finite étale
Fp-algebra. Since ”everything” over such a scheme Y is flat, we see that X → Y is proper fppf, and thus
of inductive level 0.

Assume now that dimY > 0, and suppose that, for every reduced finite type scheme Y ′ over Z with
dimY ′ < dimY , a proper surjective morphism X ′ → Y ′ of schemes with Y ′ reduced and finite type over
Z is of inductive level ≤ dimY ′. (Note that we do not need to pass to a refinement here.)

By Raynaud-Gruson’s flattening theorem and generic flatness, there is a refinement X ′ → Y of X → Y
which factors as X ′ → X0 → Y , where X ′ → X0 is proper fppf and X0 → Y is a ”blow-up”, i.e., there
is a proper closed reduced subset Z ( Y such that X0 → Y is an isomorphism over Y \ Z. Now, note
that Z is of finite type over Z and dimZ < dimY . Therefore, X0 ×Y Z → Z is of inductive level
≤ dimZ ≤ dimY − 1, as required. �

This immediately gives the following result:

Proposition 6.4. Let Y be a finite type scheme over Z, and let f : X → Y be a proper surjective
morphism. Then f is of inductive level ≤ dim(Y ).

Proof. Since Xred → X is a v-cover, we may and do assume that X is reduced (as we allow for refinements
in the definition of inductive level). In particular, X → Y factors over Yred → Y . Then, by Proposition
6.3, the morphism f : X → Yred is of inductive level ≤ dimYred = dimY . It follows from the definition
of inductive level that X → Y is of inductive level ≤ dimY (because we allow for nilimmersions in the
target). �

The second structure result we require reads as follows.

Theorem 6.5. Let X → Y be a finitely presented proper surjective morphism of qcqs schemes. Then,
there is an integer n ≥ 0 such that f is of inductive level ≤ n.

Proof. This follows from Proposition 6.4 and Noetherian approximation. �

We are now ready to prove the Main Theorem.
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Proof of Theorem 5.3. We already know that an h-sheaf satisfies conditions 1) and 2). Thus, let F be a
presheaf satisfying condition 1) and condition 2). To show that F is an h-sheaf, we first show that F is
separated in the h-topology, i.e., for every h-covering X → Y , the map of sets F (Y )→ F (X) is injective.
Thus, let a and b be elements of F (Y ) which are equal in F (X). To show that a = b we will proceed in
several steps.

First, since the h-topology is generated by finitely presented v-covers, we may assume that X → Y is
a finitely presented v-cover.

Next, to check that a = b, we may assume that Y is affine. (Here we use that F is an fppf sheaf by
assumption. Actually, we only use that F is a separated Zariski sheaf in this step.)

Then, we may (obviously) replace X → Y by a refinement. Thus, by Rydh-Voevodsky’s structure
theorem (Theorem 6.1), we may assume that the finitely presented v-cover X → Y factors as a quasi-
compact open covering X → Y ′ and a proper surjective finitely presented morphism Y ′ → Y . Since F is
an fppf sheaf, the map of sets F (Y ′)→ F (X) is injective. Thus, we may assume that X → Y is a proper
surjective finitely presented morphism.

We now invoke our second structure theorem (Theorem 6.5) to see that there is an integer n ≥ 0 such
that X → Y is of inductive level ≤ n. To prove a = b in F (Y ), we argue by induction n.

If n = 0 replacing X → Y by a refinement if necessary, the morphism X → Y is a composition of an
fppf morphism and a nilimmersion. Since F is an fppf sheaf (and thus separated fppf presheaf) and F
satisfies condition (2), it follows that a = b in F (Y ).

If n > 0, replacing X → Y by a refinement if necessary, then X → Y factors as a composition
X → X0 → Y0 → Y as in the definition of inductive level ≤ n. Using again that F is an fppf sheaf and
condition (2), we may assume that X = X0 and Y = Y0, so that X → Y is a proper surjective morphism
of finite presentation which is an isomorphism outside a closed subset Z ( Y of finite presentation and
such that the proper surjective finitely presented morphism E := X ×Y Z → Z is of inductive level
≤ n− 1. By condition (2), we have that F (Y ) = F (X)×F (E) F (Z) and by the induction hypothesis we
have that the map of sets F (Z)→ F (E) is injective. This implies that a = b. (Indeed, write a = (aX , aZ)
and b = (bX , bZ) and note that aX,E = aZ,E and bX,E = bZ,E by defintion of the pull-back. Moreover,
the condition that a = b in F (X) means that aX = bX . In particular, aX,E = bX,E . Thus,

aZ,E = aX,E = bX,E = bZ,E .

Thus, aZ and bZ are equal in F (E). Since F (Z) → F (E) is injective, this implies that aZ = bZ . Thus
a = b as required.) We conclude that F is separated.

To show that F is a sheaf (i.e., satisfies the descent condition) one argues in a similar way (i.e., reduce
to Y affine using fppf sheaf property, apply the two structure theorems to reduce to dealing with proper
surjective morphisms of inductive level ≤ n, and use induction). Details omitted. �
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