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1. Introduction

This seminar is aimed at advanced master’s students and PhD students eager to
learn a bit more about algebraic geometry through the use of moduli spaces.

The goal of this seminar is to familiarize its participants with a modern (hence
stacky) perspective on the theory of moduli spaces. Note that moduli spaces are
ubiquitous in mathematics. In fact, one of the very first varieties we encounter in
life, namely P1(C), is a moduli space (parametrizing linear subspaces of C2).

We will try to understand why moduli spaces usually do not exist (with all of
its desired properties) as algebraic varieties, but do exist as algebraic stacks. We
will then explain how certain properties of a moduli space (e.g., being separated,
proper, smooth, connected, or ”Deligne-Mumford”) translate back into properties
of the objects that the moduli space parametrizes.

We will see that many natural moduli problems can be represented (in a meaningful
way) by algebraic stacks, e.g., moduli of smooth curves, polarized abelian varieties,
hypersurfaces in projective space., and the moduli of Fano varieties.

In the previous semester the seminar discussed descent theory and ended with intro-
ducing the notion of a stack (i.e., groupoid-valued sheaf on the category of schemes).
We will not assume the participants of this seminar were present at the
previous semester.

2. Program

Each of the following six topics constitutes essentially two talks of about 90
minutes approximately.

2.1. The moduli space of smooth curves. Aim of this talk is to get a feeling
for the diagonal of a moduli stack. The diagonal of a moduli stack ”sees” in a
precise sense the properties of automorphism groups of the objects it parametrizes.

Define smooth proper curves over arbitrary schemes. Explain that the moduli
functor Mg is not representable. Recall briefly what a stack is and that Mg is a
stack. (Do not prove thatMg is a stack to avoid too much repetition. In any case,
we will prove this in the next talks in a more general setting.) Explain the relation
between the diagonal of a stack and isomorphisms between two objects of the stack.

Define what it means for a morphism of stacks to be representable, schematic,
proper, and unramified, respectively.
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Assume g > 1. Prove that the diagonal ofMg (or justMg) is schematic, proper,
and unramified. Insist that this translates into the statement that automorphism
groups of curves are finite reduced group schemes, and that the Isom-scheme be-
tween two smooth proper curves of genus g (g > 1) is proper.

If time permits, show that a smooth proper curve over some base curve B is
isotrivial (i.e., all fibres are isomorphic) if and only if it is trivial after a finite étale
base change of B.

• [1]
• [2, Chapter 13]

2.2. The moduli space of polarized varieties. There is not an ”algebraic”
object parametrizing all varieties, not even all smooth projective ones. One way
out of this is to study varieties together with an ample line bundle. The existence
of an ”algebraic” moduli space parametrizing all such objects then follows from the
theory of Hilbert schemes. Rougly speaking, the additional datum of an ample line
bundle can be used to embed your variety into some projective space (from which
the connection to Hilbert schemes becomes clear).

Introduce notion of f -ample bundle. Define polarized (smooth proper) varieties
and families of polarized varieties. Recall that the moduli of polarized varieties is
a stack, and give an idea of the proof (following Olsson). Prove that the diagonal
of this stack is schematic. Insist that this follows from the statement about isom-
schemes between polarized varieties are affine algebraic groups.

Show that the diagonal of this stack is not necessarily proper. (Look at M0.)
(Thus, with terminology we introduce later, this means that its connected compo-
nents are not necessarily separated.)

Focus on the stack of canonically polarized varieties (those with ample canonical
bundle). Explain that the diagonal here is proper (and even finite). Show that it is
not necessarily unramified in characteristic p > 0 (which shows that the analogous
statement about the diagonal ofMg when g > 1 is quite specific to curves). Explain
that is always unramified in characteristic zero, and how this relates to Cartier’s
theorem that group schemes over fields of characteristic zero are reduced (hence
smooth).

Introduce the moduli stack of principally polarized abelian varieties Ag and show
that it has a finite unramified diagonal (over Z). Here the fact that this is a stack
follows from the more general fact that the ”stack of polarized varieties” is a stack.
The claimed properties of the diagonal of Ag translate into the following statement.

Theorem. Let S be a scheme and let A→ S and B → S be principally polarized
abelian schemes. Then the scheme of isomorphisms IsomS(A,B) parametrizing
isomorphisms A → B of principally polarized abelian schemes over S is finite un-
ramified over S.

Here isomorphisms are understood to respect the group structure on A and B,
as well as the polarizations (surpressed in the notation).

• [2][4.4.10],
• [3],
• [1]
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2.3. Rigidifying moduli problems. The moduli functor of elliptic curves (resp.
smooth proper curves of genus g) is not representable by a scheme. By changing
a moduli problem slightly, one sometimes can prove the existence of a fine moduli
space which, in some suitable sense, is quite close to the moduli functor.

The simplest example is arguably given by the modular curves Y (n) (with n a
positiv integer). For each positive integer n, the functor Y (n) associates to a scheme
S over Z[1/n] the set of isomorphism classes of elliptic curves over S endowed with
a full level N -structure (i.e., the choice of a basis for the n-torsion). For n > 2, the
functor is representable by a smooth affine curve over Z[1/n]. The functor Y (1)
is not representable, but is (famously) coarsely represented by the j-line A1; the
notion of being coarsely represented will be discussed in the Bonus Talk if time
permits. For each n > 2, the stack Y(1) of elliptic curves comes equipped with a
morphism Y (n) → Y(1), and this morphism is (representable) finite étale (in the
category of stacks).

Another good example of ”rigididying a moduli space” is given by the moduli of
principally polarized ableian varieties (ppav’s) with level N structure (N > 3); this
is a higher-dimensional version of what we discussed before for elliptic curves. The
stack Ag is a quotient of the scheme An

g by a finite group. It is a good example of a
quotient stack [X/G], with G a finite group. Here the ”rigidified moduli problem” is
again finite étale over the original moduli problem (of principally polarized abelian
varieties).

Start this talk by explaining the above and proving the claimed statements. If
time permits, also discuss the Hilbert scheme of smooth curves in PN . Explain that
Mg is a quotient of this Hilbert scheme by some (infinite) algebraic group. Explain
that the Hilbert scheme is a ”rigidified” version of the moduli functor of curves.

• [3]
• [4]
• [5]
• [6]

2.4. Algebraic spaces and algebraic stacks. In this talk we (finally) introduce
the notion of an algebraic stack. To do this, we need the notion of an algebraic
space. Despite its ”name”, an algebraic space is (only) a sheaf.

Introduce fppf sheaves, and define algebraic spaces after stating that (the functor
of points of) a scheme is an fppf sheaf. The latter is something we have already
seen by now, so we won’t need a proof.

Explain that schemes are algebraic spaces (since schemes are fppf sheaves and
the identity map is an etale atlas). Explain that there are algebraic spaces which
are not schemes (in dimension > 1) citing Hironaka’s famous example. Also explain
that there are algebraic spaces which are not of the form X/G (with G acting freely
and X is a scheme). (These are not trivial to construct. Do not dwell too long on
the details in these constructions.)

Define representable morphisms, and what it means for a representable morphism
of stacks to be smooth and surjective. Define algebraic stacks following the stacks
project (asking only for representability of the diagonal and the existence of a
smooth surjection from a scheme). Define what a morphism of algebraic stacks,
and repeat what it means to be representable.

Emphasize that algebraic spaces (and schemes) are algebraic stacks, and that
they are not necessarily quotients of schemes by finite groups.
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Explain why the stackMg has a smooth presentation by a scheme (using Hilbert

schemes), same for Mg. Same for Ag if time permits. Conclude that Mg and Ag

are algebraic stacks.
Define a stack with representable diagonal to be Deligne-Mumford if it has an

étale presentation. Note that such stacks are (obviously) algebraic. Show that an
algebraic stack is Deligne-Mumford if and only if its diagonal is formally unramified
(and explain what the latter means for automorphism groups of moduli stacks).
Apply this toMg and the other stacks we have seen so far, and conclude thatMg

is a Deligne-Mumford stack.
Define separatedness of stacks via the diagonal and explain that the results in

the first talks can be reformulated as saying that the respective moduli stacks are
separated.

• [2] chapter 13.1)
• [2] chapter 5.1-5.3 + 8.3
• [7],
• [8]

2.5. Algebraic stacks and Artin’s axioms. Discuss Artin’s axioms for schemes.
Explain that a stack is algebraic if and only if it satisfies Artin’s axioms. Use

this to show that the stack of abelian varieties is not algebraic. (This is why we
need polarizations!) Same argument can be used for K3 surfaces. (Emphasize that
each of Artin’s axioms translates back into some property of the objects that the
stack parametrizes.)

• [9]
• [10]
• [11, Tag07SZ]

2.6. Smoothness of stacks vs unobstructedness of objects. Let M be a
moduli stack (e.g., the moduli of smooth curves of genus g, stable curves of genus
g, polarized abelian varieties, smooth hypersurfaces, or ”very singular” curves, etc.)

Explain that smoothness of the stack translates (via the infinitesimal lifting
criterion) into a statement about liftability of objects. Define tangent spaces of
stacks and compute them using cohomology groups.

Show thatMg is smooth by ”counting” its dimension and by computing h1(X,TX)
for X a smooth projective curve of genus g.

Same for moduli stack of smooth hypersurfaces and polarized abelian varieties.
Talk about unobstructedness of Calabi-Yau varieties (or K3 surfaces) and polar-
ized Calabi-Yau varieties and how this translates into smoothness of the respective
moduli stacks.

• [12]
• [13]
• [14]
• [15]
• [16]
• [17]
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2.7. Coarse spaces. Bonus talk. Certain non-representable functors (such as Mg)
are ”coarsely representable”. Explain this for Mg. (The construction of Mg can
be done using GIT to obtain that it is a quasi-projective scheme.) Then state the
general theorem of Keel-Mori that gives the existence of the coarse space Mg as an
algebraic space simply from the fact that Mg is a finite type separated algebraic
stack with finite diagonal.

References will be added in due course.
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2013.
[6] N. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves. Annals of Mathematics Studies,

1985.
[7] G. Laumon and L. Moret-Bailly, Champs algébriques. No. Folge 3, 39 in Ergebnisse der
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