Übungsblatt 3

Abgabe am Freitag, 12.07.2019 bis 23 Uhr

Aufgabe 3.1. Prove or disprove:

- 1. The integral closure of \mathbb{Z} in $\overline{\mathbb{Q}}$ is a Dedekind domain.
- 2. If ζ is a primitive 5-th root of unity in \mathbb{C} and $K = \mathbb{Q}(\zeta)$, then $1 + \zeta$ is an element of O_K^{\times} and the group generated by $1 + \zeta$ in O_K^{\times} is of finite index.
- 3. If *K* is a number field, then there is a finite extension *L* of *K* such that, for all ideals \mathfrak{a} of \mathcal{O}_K , the ideal $\mathfrak{a}\mathcal{O}_L$ is principal.
- 4. A Dedekind domain with precisely two maximal ideals is a principal ideal domain.
- 5. If *A* is a Dedekind domain and \mathfrak{a} is a nonzero ideal of *A*, then all ideals of the quotient ring A/\mathfrak{a} are principal.
- 6. Every ideal of a Dedekind domain can be generated by two elements.
- 7. An integral domain of dimension at least one in which all nonzero ideals admit a unique factorization into prime ideals is a Dedekind domain.

Aufgabe 3.2. Let *K* and *L* be finite Galois extensions of \mathbb{Q} . Suppose that there is a prime number *p* such that *p* is unramified in *K* and totally ramified in *L*. Show that *K* and *L* are linearly disjoint.