Lineare Algebra und Geometrie 2 – SS 2018

Blatt 1

ARIYAN JAVAN PEYKAR & MAXIMILIAN PREISINGER

Präsenzaufgabe 1.1 Vektorräume

Sei K ein Körper. Welche der folgenden Mengen sind mit den gegebenen Strukturen Vektorräume? Begründen Sie Ihre Antwort.

- a) $U = \{A \in \operatorname{Mat}(n \times n, K) \mid \det(A) = 0\}$ mit der gewöhnlichen Addition $A +_U B := A + B$ für $A, B \in U$ und der gewöhnlichen Skalarmultiplikation $\lambda \cdot (a_{ij}) := (\lambda \cdot a_{ij})$ für $\lambda \in K$ und $(a_{ij}) \in U$.
- b) Sei $K = \mathbb{R}$. $U = \{x \in \mathbb{R} \mid x > 0\}$ mit $x +_U y := x \cdot y$ für $x, y \in U$ und $\lambda \cdot x := x^{\lambda}$ für $\lambda \in \mathbb{R}$ und $x \in U$.
- c) $U = \text{Abb}(\mathbb{N}, K)$ mit $(f +_U g)(n) := f(n) + g(n)$ und $(\lambda \cdot f)(n) := \lambda \cdot (f(n))$ für $f, g \in U, n \in \mathbb{N}$ und $\lambda \in K$.
- d) $U = \{ f \in Abb(\mathbb{N}, K) \mid f(n) = 0 \text{ für fast alle } n \in \mathbb{N} \} \text{ mit } (f +_U g)(n) := f(n) + g(n)$ und $(\lambda \cdot f)(n) := \lambda \cdot (f(n)) \text{ für } f, g \in U, n \in \mathbb{N} \text{ und } \lambda \in K.$

Präsenzaufgabe 1.2 Determinanten

Es seien $A = (a_{ij})$ und B zwei $n \times n$ -Matrizen über den reellen Zahlen \mathbb{R} . Zeigen oder widerlegen Sie:

- a) Ist A eine untere Dreiecksmatrix, so ist $det(A) = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$.
- b) $\det(A) + \det(B) \le |\det(A+B)|$.
- c) $\det((a_{ij})) = \det(((-1)^{i+j}a_{ij})).$
- d) Sei $\sigma \in \operatorname{Sym}(n)$ eine Permutation. Wir assoziieren zu einer Matrix M die Matrix $M^{\sigma} = (m_{ij}^{\sigma})$ mit $m_{ij}^{\sigma} := m_{\sigma(i),j}$. Dann gilt: $\det(A^{\sigma}) = \operatorname{sgn}(\sigma) \cdot \det(A)$.

Präsenzaufgabe 1.3 Eigenwerte

- a) Bestimmen Sie die Eigenwerte der folgenden Matrizen über einem Körper K.
 - (i) $\begin{pmatrix} 1 & 4 & 0 \\ 4 & 1 & 3 \\ 0 & 3 & 1 \end{pmatrix}$
 - (ii) $\begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & 2 \end{pmatrix}$
- b) Sei $A \in Mat(n \times n, K)$. Zeigen Sie:
 - (i) Sind v_1 und v_2 linear unabhängige Eigenvektoren von A zum Eigenwert λ , so ist $v_1 + v_2$ ebenfalls ein Eigenvektor von A zum Eigenwert λ .
 - (ii) Ist A invertierbar und λ ein Eigenwert von A, so ist λ^{-1} ein Eigenwert von A^{-1} .

Aufgabe 1.1 (1+1+2 Punkte) Es sei K ein Körper. Welche der folgenden Mengen sind mit den gegebenen Strukturen Vektorräume? Begründen Sie Ihre Antwort und geben Sie gegebenenfalls eine Basis an.

a) $U = \{A \in \operatorname{Mat}(n \times n, K) \mid \operatorname{Sp}(A) = 0\}$ mit der gewöhnlichen Addition $A +_U B := A + B$ und der gewöhnlichen Skalarmultiplikation $\lambda \cdot (a_{ij}) := (\lambda \cdot a_{ij})$ für $A, B \in U$ und $\lambda \in K$.

Dabei ist die Spur Sp einer Matrix gegeben durch die Summe ihrer Diagonaleinträge: $\operatorname{Sp}(A) = \sum_{i=1}^{n} a_{ii}$.

- b) $U = \{A \in \operatorname{Mat}(n \times n, K) \mid \det(A) \neq 0\}$ mit der Addition $A +_U B := A \cdot B$ und der geöhnlichen Skalarmuliplikation $\lambda \cdot (a_{ij}) := (\lambda \cdot a_{ij})$ für $A, B \in U$ und $\lambda \in K$.
- c) $U = \{(a_{ij}) \in \operatorname{Mat}(n \times n, K) \mid \sum_{j=1}^{n} a_{1j} = \sum_{j=1}^{n} a_{2j} = \dots = \sum_{j=1}^{n} a_{nj} \}$ mit der gewöhnlichen Addition $A +_{U} B := A + B$ und der gewöhnlichen Skalarmultiplikation $\lambda \cdot (a_{ij}) := (\lambda \cdot a_{ij})$ für $A, B \in U$ und $\lambda \in K$.

Aufgabe 1.2 (2 +2 Punkte) a) Es sei $A = (a_{ij})$ eine $n \times n$ -Matrix über den reellen Zahlen \mathbb{R} . Zeigen oder widerlegen Sie:

(i)
$$\det(A) \le \left| \left(\sum_{i,j=1}^n a_{ij} \right)^n \right|$$
.

(ii)
$$\det(A) \le \left(\sum_{i,j=1}^n |a_{ij}|\right)^n$$
.

b) Es sei $n \geq 2$. Es seien x_1, x_2, \ldots, x_n Unbekannte. Zeigen Sie:

$$\det\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Aufgabe 1.3 (2+2 Punkte) Es sei K ein Körper.

a) Berechnen Sie die Eigenwerte der folgenden Matrizen über dem Körper K.

(i)
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(ii)
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

- b) Sei nun $K = \mathbb{R}$. Seien $A, B \in \operatorname{Mat}(n \times n, \mathbb{R})$. Zeigen Sie:
 - (i) Ist λ ein Eigenwert von AB, so ist λ ein Eigenwert von BA.
 - (ii) Ist λ ein Eigenwert von A und gilt $A^3 = A$, so ist $\lambda \in \{0, 1, -1\}$.