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The sheaf of differential operators

Let X be a smooth complex algebraic variety, with dim(X ) = n.
The sheaf of differential operators DX on X is the subsheaf of C-algebras
of EndC(OX ) generated by OX and TX = DerC(OX ).

If x1, . . . , xn are algebraic coordinates on an open subset U ⊆ X , then we
have derivations ∂1, . . . , ∂n on U such that ∂i (xj) = δi ,j , and DX |U is a

locally free (left or right) OX -module with basis ∂β = ∂β1
1 · · · ∂

βn
n , β ∈ Nn.

Example. If X = An, then we have the Weyl algebra

An(C) = Γ(X ,DX ) =
C〈x1, . . . , xn, ∂1, . . . , ∂n〉

[xi , xj ] = 0, [∂i , ∂j ] = 0, [∂i , xj ] = δi ,j
.
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The order filtration

DX carries a filtration by order of differential operators: FpDX is the
locally free submodule of DX generated by those ∂β with |β| =

∑
i βi ≤ p.

For example, we have F0DX = OX and F1DX = OX + DerC(OX ).

Easy properties:

1 FpDX · FqDX ⊆ Fp+qDX for all p, q ≥ 0.

2 [FpDX ,FqDX ] ⊆ Fp+q−1DX for all p, q ≥ 0.

This implies that the corresponding graded object

grF• (DX ) :=
⊕
p≥0

FpDX/Fp−1DX

is a sheaf of graded commutative rings. We thus have a morphism

π∗(OT∗X ) = Sym•OX
(TX )→ grF• (DX )

and the local description shows that this is an isomorphism.
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Left DX -modules

Giving a left DX -module is the same as an OX -module M with an action

DerC(OX )×M→M

that satisfies:

1 D · (fm)− f (D ·m) = D(f )m for all f ∈ OX .

2 D1 · (D2 ·m)− D2 · (D1 ·m) = [D1,D2] ·m.

Equivalently, this can be reformulated as a C-linear map
∇ : M→ ΩX ⊗OX

M. First condition: this is a connection, second
condition: the connection is integrable.
The De Rham complex of M, situated in degrees −n, . . . , 0 is

0→M→ ΩX ⊗OX
M→ Ω2

X ⊗OX
M→ . . .→ Ωn

X ⊗OX
M→ 0.
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Left DX -modules, cont’d

All DX modules we will consider will be quasi-coherent as OX -modules.
Fact: Every DX -module which is coherent as an OX -module is locally
free. These are the “nice objects” in the category of DX -modules.

Example 1. The structure sheaf OX has a tautological left DX -action.
The corresponding connection is the De Rham differential d : OX → ΩX .

Example 2. The sheaf DX has a canonical structure of left DX -module.

Example 3. If Z is a hypersurface in X , then

OX (∗Z ) =
⋃
m≥1

OX (mZ )

has a left DX -module structure induced by the one on OX , via the
“quotient rule”. If Z = (f = 0), then OX (∗Z ) = OX [1/f ]. Note: this is
not coherent as an OX -module. This will be a key example for us.
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Filtrations on coherent DX -modules

A DX -module is coherent if locally finitely generated over DX . Such a
module M is studied by choosing an (increasing, exhaustive) good
filtration F•M on M:

1 FpM⊆M coherent OX -submodule for all p, and it is 0 for p � 0.

2 FpDX · FqM⊆ Fp+qM for all p and q, with equality for all p if
q � 0 (then say the filtration is determined at level q).

It is easy to construct such a filtration: e.g. choose a coherent
OX -submodule M0 in M such that DX · M0 =M and let

FpM = FpDX · M0 for all p ≥ 0.

Clearly: such a good filtration is far from unique.
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Filtrations on coherent DX -modules, cont’d

The definition of a good filtration implies that

grF• (M) :=
⊕
p∈Z

FpM/Fp−1M

is locally finitely generated over grF• (DX ): it is generated in degree ≤ q if
the filtration is determined at level q. Hence this can be considered a
coherent sheaf on T ∗X . Its support is the characteristic variety Char(M).
Key point: this is independent of the choice of filtration.

The dimension dim(M) of M is the dimension of Char(M) ⊆ T ∗X .
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Holonomic DX -modules

We have the following “miracle”:
Theorem 1 (Bernstein, Sato-Kawai-Kashiwara). For every nonzero
coherent DX -module M, we have dim(M) ≥ n.
For a sketch of proof in the case X = An: see slides at the end.
Definition. A coherent DX -module is holonomic if M = 0 or
dim(M) = n.

Example 1. If M = DX , then Char(M) = T ∗X , hence dim(DX ) = 2n.

Example 2. If E is a vector bundle with integrable connection, we can
take FpE = 0 for p < 0 and FpE = E for p ≥ 0, hence Char(E) is the
0-section of T ∗X . Therefore E is a holonomic DX -module.

Example 3. If Z is a hypersurface in X , then OX (∗Z ) is holonomic (note:
even coherence is not clear). For a sketch of proof when X = An, see
slides at the end.

Mircea Mustaţă () An overview of D-modules Mainz July 9, 2018 8



Holonomic DX -modules

We have the following “miracle”:
Theorem 1 (Bernstein, Sato-Kawai-Kashiwara). For every nonzero
coherent DX -module M, we have dim(M) ≥ n.
For a sketch of proof in the case X = An: see slides at the end.
Definition. A coherent DX -module is holonomic if M = 0 or
dim(M) = n.

Example 1. If M = DX , then Char(M) = T ∗X , hence dim(DX ) = 2n.

Example 2. If E is a vector bundle with integrable connection, we can
take FpE = 0 for p < 0 and FpE = E for p ≥ 0, hence Char(E) is the
0-section of T ∗X . Therefore E is a holonomic DX -module.

Example 3. If Z is a hypersurface in X , then OX (∗Z ) is holonomic (note:
even coherence is not clear). For a sketch of proof when X = An, see
slides at the end.
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Holonomic DX -modules, cont’d

For a short exact sequence of coherent DX -modules

0→M′ →M→M′′ → 0,

we choose a good filtration on M and then the induced filtrations on M′
and M′′. We get a short exact sequence

0→ grF• (M′)→ grF• (M)→ grF• (M′′)→ 0,

and thus Char(M) = Char(M′) ∪ Char(M′′).
Theorem 1 implies that M is holonomic iff both M′ and M′′ are
holonomic. In particular, holonomic DX -modules form an Abelian
subcategory of all DX -modules.
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Holonomic DX -modules, cont’d

Using the graded structure, one defines a notion of multiplicity e(M) for a
coherent DX -module M (analogue of degree of coherent sheaf on Pn).
This is a non-negative integer and it is 0 if and only if M = 0.

For a version of the definition for X = An: see the last slides.

For an exact sequence of holonomic DX -modules as on the previous slide,
we have

e(M) = e(M′) + e(M′′).

Consequence: all objects in the category of holonomic DX -modules have
finite length.

Another reason holonomic DX -modules are good: they are preserved by
pull-back and push-forward of DX -modules (not true for coherent
DX -modules).
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Left vs. right DX -modules

There is a canonical equivalence of categories between left DX -modules
and right DX -modules. This is useful, in practice, since the push-forward
functor is naturally defined for right D-modules.

Key point: The sheaf ωX = Ωn
X has a natural structure of right

DX -module given for an n-form ω and a derivation D by

ω · D = Lie(D)ω, that maps

(D1, . . . ,Dn) to D
(
ω(D1, . . . ,Dn)

)
−

n∑
i=1

ω
(
D1, . . . , [D,Di ], . . . ,Dn

)
.

If x1, . . . , xn are local coordinates, then

(fdx1 ∧ . . . ∧ dxn)∂i = − ∂f
∂xi

dx1 ∧ . . . ∧ dxn.
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Left vs. right DX -modules, cont’d

If M is a left DX -module, then ωX ⊗OX
M is a right DX -module, with

(ω ⊗m)D = ωD ⊗m − ω ⊗ Dm.

If N is a right DX -module, then HomOX
(ωX ,N ) is a left DX -module, with

(Dϕ)(ω) = ϕ(ωD)− ϕ(ω)D.

The canonical isomorphisms of OX -modules

M→HomOX
(ωX , ωX ⊗OX

M), ωX ⊗OX
HomOX

(ωX ,N )→ N

are morphisms of DX -modules, hence we get our equivalence between the
categories of left and right DX -modules.
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Left vs. right DX -modules, cont’d

Description in local coordinates x1, . . . , xn on U: we have a C-linear
anti-commutative map τ : DX → DX such that

τ |OX
= idOX

and τ(∂i ) = −∂i .

Note that the local coordinates induce a trivialization ωX |U ' OU .
A left DX -module M becomes a right DX -module via τ and conversely.
This is the local description of the previous equivalence.

It is clear that from a good filtration F•M on the left DX -module M, we
obtain a filtration on the corresponding right DX -module N = ωX ⊗OX

M.
Indexing convention: Fp−nN = ωX ⊗OX

FpM.
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The Riemann-Hilbert correspondence

Classical version. We work in the analytic topology, with holomorphic
vector bundles. Given a rank r holomorphic vector bundle, with integrable
connection (E ,∇), the classical result about solving ODE implies that
ker(∇) ⊆ E is a rank r local system.

Conversely, given a local system L, we get a vector bundle E = L⊗C OX ,
with integrable connection 1L ⊗ d . We thus get an equivalence of
categories between the category of holomorphic vector bundles on X , with
integrable connection, and the category of local systems on X .

Note: if L is a local system, then L[n] is quasi-isomorphic to the
(holomorphic) De Rham complex of E = L⊗C OX .

If X is compact, then GAGA implies that algebraic vector bundles with
integrable connection are the same as holomorphic vector bundles with
integrable connection.
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categories between the category of holomorphic vector bundles on X , with
integrable connection, and the category of local systems on X .

Note: if L is a local system, then L[n] is quasi-isomorphic to the
(holomorphic) De Rham complex of E = L⊗C OX .

If X is compact, then GAGA implies that algebraic vector bundles with
integrable connection are the same as holomorphic vector bundles with
integrable connection.
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The Riemann-Hilbert correspondence, cont’d

Non-compact case: version due to Deligne describing local systems via
algebraic vector bundles with integrable connection, and having regular
singularities. For curves, this means that the connection satisfies the Fuchs
condition at the points in the boundary of X .

One can define the notion of regular singularities for arbitrary holonomic
DX -modules (for example, by pulling back via morphisms from smooth
curves), but we do not go into any details.

Theorem 2 (Kashiwara, Mebkhout, Beilinson-Bernstein) For every smooth
algebraic variety X , the De Rham functor DRX extends to an equivalence
of triangulated categories

Db
rh(DX ) ' Db

constr(X ), where

Db
rh(DX ): bounded derived category of complexes of DX -modules, with

regular holonomic cohomology, and
Db
constr(X ): the bounded derived category of complexes with constructible

cohomology.

Mircea Mustaţă () An overview of D-modules Mainz July 9, 2018 15



The Riemann-Hilbert correspondence, cont’d

Non-compact case: version due to Deligne describing local systems via
algebraic vector bundles with integrable connection, and having regular
singularities. For curves, this means that the connection satisfies the Fuchs
condition at the points in the boundary of X .

One can define the notion of regular singularities for arbitrary holonomic
DX -modules (for example, by pulling back via morphisms from smooth
curves), but we do not go into any details.

Theorem 2 (Kashiwara, Mebkhout, Beilinson-Bernstein) For every smooth
algebraic variety X , the De Rham functor DRX extends to an equivalence
of triangulated categories

Db
rh(DX ) ' Db

constr(X ), where

Db
rh(DX ): bounded derived category of complexes of DX -modules, with

regular holonomic cohomology, and
Db
constr(X ): the bounded derived category of complexes with constructible

cohomology.
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The Riemann-Hilbert correspondence, cont’d

The Riemann-Hilbert correspondence induces an equivalence of Abelian
categories between the category of holonomic DX -modules, with regular
singularities, and perverse sheaves (with C coefficients).

The correspondence is compatible with the functors (push-forward,
pull-back, etc) defined on both sides.
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The Bernstein-Sato polynomial

The following result was a key motivation in the development of the
algebraic theory of D-modules.
Theorem 3 (Bernstein). If X is a smooth algebraic variety and f ∈ O(X )
nonzero, then there is a nonzero b(s) ∈ C[s] such that

b(s)f s = P(s) · f s+1, for some P(s) ∈ DX [s].

Here we consider the left DX -module OX [s, 1/f ]f s , where

D · f s =
sD(f )

f
f s for every D ∈ DerC(OX ).

The set of those b(s) for which there is P(s) as above is an ideal. The
monic generator of this ideal is the Bernstein-Sato polynomial bf (s) of f .
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The Bernstein-Sato polynomial, cont’d

Example 1. If f = x1 ∈ C[x1, . . . , xn], then

(s + 1)f s = ∂1 · f s+1; in fact bf (s) = s + 1.

Example 2. If f = x2
1 + . . .+ x2

n ∈ C[x1, . . . , xn], then

(s + 1)(4s + 2n)f s = (∂2
1 + . . .+ ∂2

n) · f s+1.

In fact, we have bf (s) = (s + 1)(s + n
2 ).

Example 3. For every f , by making s = −1, we have

bf (−1)
1

f
= P(−1) · 1 ∈ O(X ).

Hence if f is non-invertible, then (s + 1) divides bf (s).
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The Bernstein-Sato polynomial, cont’d

Example 4. For every positive integer m, we have

bf (−m − 1)
1

f m+1
∈ DX ·

1

f m

Hence 1
f m generates OX [1/f ] over DX if bf has no integer roots < −m.

Theorem 4 (Kashiwara). All roots of bf (s) are in Q<0.

In general, the roots of bf (s) are subtle invariants of the singularities of f ,
related to several other such invariants. For example, the largest root of
bf (s) is −lct(f ), by a result of Lichtin and Kollár.
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The Bernstein-Sato polynomial, cont’d

Sketch of proof for the existence of the Bernstein-Sato polynomial:

Suppose, for simplicity, X = An. Consider M = C(s)[x1, . . . , xn]f · f s as a
module over An

(
C(s)

)
.

M is a holonomic D-module (this is proved in the same way that one
shows that C[x1, . . . , xn]f is holonomic over An(C)). Therefore the
following decreasing sequence of submodules is stationary

An

(
C(s)

)
· f s ⊇ An

(
C(s)

)
· f s+1 ⊇ An

(
C(s)

)
· f s+2 ⊇ . . .

We obtain a relation f m+s = P(s, x , ∂x) · f m+s+1. The theorem follows
using the automorphism s → s −m and clearing the denominators.
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The V -filtration

The V -filtration was introduced by Malgrange (and extended by
Kashiwara) in order to describe the nearby cycles functor at the level of
holonomic D-modules.
Setting: Let f ∈ O(X ) nonzero. Consider

ι : X ↪→ X × A1, ι(x) =
(
x , f (x)

)

If M is a DX -module, then the D-module theoretic push-forward ι+M is
described as follows:
Case 1. If M = OX , then

ι+M = OX [t]f−t/OX [t] =
⊕
j≥0

OX · ∂jtδ, where δ = [1/(f − t)].

Case 2. For any M, we have ι+M =M⊗OX
ι+OX .
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The V -filtration, cont’d

Goal of V -filtration: put action of ∂tt on ι+M in upper-triangular form.

It is a decreasing, exhaustive, rational, discrete, left-continuous filtration
(V α = V αι+M)α∈Q on ι+M that satisfies:

i) Each V α is finitely generated over DX [t, ∂tt]

ii) t · V α ⊆ V α+1, with equality if α > 0

iii) ∂t · V α ⊆ V α−1

iv) ∂tt + α is nilpotent on V α/V>α.

These properties uniquely characterize the V -filtration.
Key observation: if M = OX , then

ι+OX [1/f ] ' OX [1/f , s]f s , δ → f s

where s acts on the left-hand side by −∂tt and t acts on the right-hand
side by P(s)f s → P(s + 1)f s+1.
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The V -filtration, cont’d

We thus see that the Bernstein-Sato polynomial bf is the monic
polynomial of smallest degree such that

bf (−∂tt)δ ∈ DX [−∂tt] · tδ

Using this, and the rationality of the roots of bf , Malgrange showed the
existence of V -filtration for M = OX . He also showed that
DRX (V>0/V>1)[1] gives the nearby cycles of f , with the monodromy
action corresponding to the action of exp(−2πi∂tt).

Consequence: the eigenvalues of the monodromy action on the
cohomology of the Milnor fiber of f are the exp(2πiα), where α is a root
of bf .
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Appendix: some proofs in the case X = An

When X = An, some of the basic results are easier to prove. The reason:
we can consider on An = An(k) (where k is any field of characteristic 0)
the Bernstein filtration:

BpAn =
⊕

|α|+β|≤n

kxα∂β.

As before, we have

grB• An ' S := Sym•RDerk(R) ' k[x1, . . . , xn, y1, . . . , yn],

where R = k[x1, . . . , xn].

If M is a finitely generated module over An, we consider a filtration F•M
on M that is compatible with the Bernstein filtration on An (and is good,
as before). We get a notion of dimension as before and a notion of
multiplicity (the fact that the two notions of dimension agree can be
proved using a homological characterization of dimension).
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Appendix: some proofs in the case X = An, cont’d

Given M, choose F•M and put

dim(M) := dim
(
grF• (M

)
) and e(M) := deg

(
grF• (M)

)
.

Hence
dim(M) = r iff dimk FpM ∼ pr and

e(M) = lim
p→∞

r ! · dimk FpM

pr
, where r = dim(M).

Sketch of proof of Bernstein’s dimension inequality:
May assume F0M 6= 0. One shows by induction on p that the map

BpAn → Homk(FpM,F2pM), Q → (m→ Qm)

is injective. Since dimk BpAn grows like p2n and both dimk FpM and
dimk F2pM grow like pdim(M), we get dim(M) ≥ n.
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Appendix: some proofs in the case X = An, cont’d

Sketch of proof for the fact that Rf is holonomic:
Let d = deg(f ). Consider on Rf the filtration given by

FpRf =
{ g

f p
| deg(g) ≤ p(d + 1)

}
.

One checks: if ε > 0, then

dimk FpRf ≤ (1 + ε)
(d + 1)n

n!
pn for p � 0.

The Bernstein inequality implies that every finitely generated submodule of
Rf is holonomic, of multiplicity ≤ (d + 1)n. Hence every increasing
sequence of finitely generated submodules of Rf has length ≤ (d + 1)n.
Therefore Rf is finitely generated, and thus holonomic.
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