Übungsblatt 9

Abgabe am Freitag, 13.01.2017 bis 16 Uhr

Präsenzaufgabe 1. Es sei K ein Körper und V,W endlich dimensionale K-Vektorräume. Weiter sei $\varphi \colon V \to W$ eine lineare Abbildung und φ^* die induzierte lineare Abbildung

$$\varphi^* : W^* = \operatorname{Hom}(W, K) \to \operatorname{Hom}(V, K) = V^*, \quad f \mapsto f \circ \varphi$$

auf den zugehörigen Dualräumen. Zeigen oder widerlegen Sie:

- (a) Ist φ surjektiv, so ist auch φ^* surjektiv.
- (b) Ist φ injektiv, so ist φ^* surjektiv.
- (c) Die Abbildung $\operatorname{Hom}(V,W) \to \operatorname{Hom}(W^*,V^*), \ \varphi \mapsto \varphi^*$ ist ein Isomorphismus von Vektorräumen.

Präsenzaufgabe 2. Es sei V ein K-Vektorraum und $\{v_1, \ldots, v_n\}$ eine Basis für V sowie $\{v_1^*, \ldots, v_n^*\}$ die duale Basis für V^* .

- (a) Zeigen Sie, dass für $f \in V^*$ gilt: $f = \sum_{i=1}^n f(v_i)v_i^*$.
- (b) Zeigen Sie, dass für $v \in V$ gilt: $v = \sum_{i=1}^{n} v_i^*(v) v_i$.
- (c) Gegeben sei nun die Basis $v_1 = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ von \mathbb{R}^3 . Bestimmen Sie die zugehörige duale Basis von $(\mathbb{R}^3)^*$.

Aufgabe 9.1 (1+1+2 Punkte). Es sei K ein Körper und V,W endlich dimensionale K-Vektorräume. Weiter sei $\varphi \colon V \to W$ eine lineare Abbildung und φ^* die induzierte lineare Abbildung

$$\varphi^* \colon W^* = \operatorname{Hom}(W, K) \to \operatorname{Hom}(V, K) = V^*, \quad f \mapsto f \circ \varphi$$

auf den zugehörigen Dualräumen. Zeigen oder widerlegen Sie:

- (a) Ist φ injektiv, so ist auch φ^* injektiv.
- (b) Ist φ surjektiv, so ist φ^* injektiv.
- (c) Ist nun $W = V \oplus U$ für einen endlich dimensionalen K-Vektorraum U und $\varphi \colon V \to W, \ v \mapsto (v,0)$ die kanonische Einbettung, dann gilt $W^* \cong V^* \oplus U^*$ und unter diesem Isomorphismus gleicht φ^* der Projektion $\operatorname{pr}_{V^*} \colon V^* \oplus U^* \to V^*, \ (f,g) \mapsto f.$

Aufgabe 9.2 (1+1+2 Punkte). Es sei V ein K-Vektorraum mit Basis $\{e_i\}_{i\in\mathbb{N}}$. Wir definieren $e_i^*\in V^*$ durch $e_i^*(e_j):=\delta_{ij}$.

- (a) Zeigen Sie, dass die e_i^* linear unabhängig sind.
- (b) Zeigen Sie, dass die e_i^* kein Erzeugendensystem von V^* bilden.
- (c) Zeigen Sie, dass V^* keine abzählbare Basis besitzt.

Aufgabe 9.3 (1+1+1+1 Punkte). Es sei V ein endlich dimensionaler \mathbb{R} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und $U \subseteq V$ ein Untervektorraum. Wir nennen den Untervektorraum

$$U^0 := \{ f \in V^* \mid \forall u \in U : f(u) = 0 \} \subseteq V^*$$

den Annullator von U.

- (a) Zeigen Sie, dass die Abbildung $\Psi \colon V \to V^*, \ v \mapsto \langle v, \cdot \rangle$ ein Isomorphismus ist.
- (b) Zeigen Sie, dass $\Psi(U^{\perp}) = U^0$ gilt.
- (c) Es sei nun $\varphi\colon V\to W$ eine lineare Abbildung endlich dimensionaler \mathbb{R} -Vektorräume, $\varphi^*\colon W^*\to V^*$ die induzierte lineare Abbildung der zugehörigen Dualräume und $U\subseteq W$ ein Untervektorraum.. Zeigen Sie, dass

$$\varphi^*(U^0) = (\varphi^{-1}(U))^0$$

gilt.

(d) Bestimmen Sie für

$$U = \operatorname{span}\left(\begin{pmatrix} 0\\1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}\right) \subseteq \mathbb{R}^4$$

eine Basis von $U^0 \subseteq (\mathbb{R}^4)^*$.