Übungsblatt 10

Abgabe am Freitag, 20.01.2017 bis 16 Uhr

Präsenzaufgabe 1. Zeigen oder widerlegen Sie:

- (a) Ist $0 \to V_1 \to V_2 \to V_3 \to 0$ eine kurze exakte Sequenz von K-Vektorräumen endlicher Dimension, so gilt $\dim V_2 = \dim V_1 + \dim V_3$.
- (b) Ist $0 \to V_1 \to V_2 \to V_3 \to 0$ ein Komplex von K-Vektorräumen endlicher Dimension, so gilt $\dim V_2 = \dim V_1 + \dim V_3$.
- (c) Es seien $0 \to V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \to 0$ und $0 \to W_1 \xrightarrow{g_1} W_2 \xrightarrow{g_2} W_3 \to 0$ kurze exakte Sequenzen von K-Vektorräumen und $\varphi_i \colon V_i \to W_i$ für $i \in \{2,3\}$ Homomorphismen, so dass das Diagramm

$$V_{2} \xrightarrow{f_{2}} V_{3}$$

$$\downarrow \varphi_{2} \qquad \qquad \downarrow \varphi_{3}$$

$$V_{2} \xrightarrow{g_{2}} W_{3}$$

kommutiert, das heißt $\varphi_3 \circ f_2 = g_2 \circ \varphi_2$. Dann existiert ein eindeutiger Homomorphismus $\varphi_1 \colon V_1 \to W_1$, so dass auch

$$V_{1} \xrightarrow{f_{1}} V_{2}$$

$$\downarrow \varphi_{1} \qquad \qquad \downarrow \varphi_{2}$$

$$W_{1} \xrightarrow{g_{1}} W_{2}$$

kommutiert.

(d) Sind in (c) φ_2 und φ_3 Isomorphismen, so ist auch φ_1 ein Isomorphismus.

Präsenzaufgabe 2. Es seien $0 \to V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \to 0$ und $0 \to W_1 \xrightarrow{g_1} W_2 \xrightarrow{g_2} W_3 \to 0$ kurze exakte Sequenzen von endlich dimensionalen K-Vektorräumen und $\varphi_i \colon V_i \to W_i$ für $i \in \{1,3\}$ Homomorphismen. Zeigen oder widerlegen Sie:

(a) Es gibt einen Homomorphismus $\varphi_2 \colon V_2 \to W_2$, so dass das Diagramm

$$0 \longrightarrow V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \longrightarrow 0$$

$$\downarrow \varphi_1 \qquad \downarrow \varphi_2 \qquad \downarrow \varphi_3$$

$$0 \longrightarrow W_1 \xrightarrow{g_1} W_2 \xrightarrow{g_2} W_3 \longrightarrow 0$$

kommutiert, das heißt $\varphi_2 \circ f_1 = g_1 \circ \varphi_1$ und $\varphi_3 \circ f_2 = g_2 \circ \varphi_2$.

- (b) Der Homomorphismus φ_2 in (a) ist bereits durch φ_1 und φ_3 eindeutig bestimmt.
- (c) Wenn φ_1 und φ_3 Isomorphismen sind, so ist auch φ_2 ein Isomorphismus.

Aufgabe 10.1 (1+1+1+1 Punkte). Zeigen oder widerlegen Sie

(a) Ist $0 \to V_1 \to V_2 \to \cdots \to V_n \to 0$ eine exakte Sequenz von K-Vektorräumen endlicher Dimension, so gilt $\sum_{j=1}^{n} (-1)^j \dim V_j = 0$.

- (b) Ist $0 \to V_1 \to V_2 \to \cdots \to V_n \to 0$ ein Komplex von K-Vektorräumen endlicher Dimension, so gilt $\sum_{j=1}^{n} (-1)^j \dim V_j = 0$.
- (c) Es seien $0 \to V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \to 0$ und $0 \to W_1 \xrightarrow{g_1} W_2 \xrightarrow{g_2} W_3 \to 0$ kurze exakte Sequenzen von K-Vektorräumen und $\varphi_i \colon V_i \to W_i$ für $i \in \{1,2\}$ Homomorphismen, so dass das Diagramm

$$V_1 \xrightarrow{f_1} V_2$$

$$\downarrow \varphi_1 \qquad \qquad \downarrow \varphi_2$$

$$V_1 \xrightarrow{g_1} W_2$$

kommutiert, das heißt $\varphi_2 \circ f_1 = g_1 \circ \varphi_1$. Dann existiert ein eindeutiger Homomorphismus $\varphi_3 \colon V_3 \to W_3$, so dass auch

$$V_{2} \xrightarrow{f_{2}} V_{3}$$

$$\downarrow \varphi_{2} \qquad \qquad \downarrow \varphi_{3}$$

$$W_{2} \xrightarrow{g_{2}} W_{3}$$

kommutiert.

(d) Sind in (c) φ_1 und φ_2 Isomorphismen, so ist auch φ_3 ein Isomorphismus.

Aufgabe 10.2 (1+1+1+1 Punkte). Es seien $0 \to V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \to 0$ und $0 \to W_1 \xrightarrow{g_1} W_2 \xrightarrow{g_2} W_3 \to 0$ kurze exakte Sequenzen von K-Vektorräumen und $\varphi_i \colon V_i \to W_i$ für $i \in \{1,2,3\}$ Homomorphismen, so dass das Diagramm

$$0 \longrightarrow V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \longrightarrow 0$$

$$\downarrow^{\varphi_1} \qquad \downarrow^{\varphi_2} \qquad \downarrow^{\varphi_3}$$

$$0 \longrightarrow W_1 \xrightarrow{g_1} W_2 \xrightarrow{g_2} W_3 \longrightarrow 0$$

kommutiert, das heißt $\varphi_2 \circ f_1 = g_1 \circ \varphi_1$ und $\varphi_3 \circ f_2 = g_2 \circ \varphi_2$.

- (a) Zeigen Sie: Falls φ_2 ein Isomorphismus ist, so ist φ_1 injektiv und φ_3 surjektiv.
- (b) Wir definieren den Verbindungshomomorphismus $\delta \colon \mathrm{Ker}(\varphi_3) \to W_1/\mathrm{Bild}(\varphi_1)$ wie folgt: Es sei $v_3 \in \mathrm{Ker}(\varphi_3)$. Wegen der Surjektivität von f_2 gibt es ein $v_2 \in V_2$ mit $f_2(v_2) = v_3$. Es folgt $g_2(\varphi_2(v_2)) = \varphi_3(f_2(v_2)) = 0$, so dass $\varphi_2(v_2) \in \mathrm{Ker}(g_2) = \mathrm{Bild}(g_1)$. Daher existiert ein $w_1 \in W_1$ mit $g_1(w_1) = \varphi_2(v_2)$. Wir definieren nun $\delta(v_3) = w_1 + \mathrm{Bild}(\varphi_1)$. Zeigen Sie, dass δ wohldefiniert ist.
- (c) Zeigen Sie: Falls φ_2 ein Isomorphismus ist, so ist auch δ ein Isomorphismus.
- (d) Es seien nun φ_1 injektiv, φ_3 surjektiv und δ ein Isomorphismus. Ist dann φ_2 bereits ein Isomorphismus?

Aufgabe 10.3 (1+2+1 Punkte). Es sei $0 \to V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \to 0$ eine kurze exakte Sequenz von endlich dimensionalen K-Vektorräumen und W ein weiterer endlich dimensionaler K-Vektorraum.

(a) Zeigen Sie, dass ein Homomorphismus $s: V_2 \to V_1$ existiert, so dass $s \circ f_1 = \mathrm{id}_{V_1}$.

(b) Zeigen Sie, dass die Sequenz

$$0 \to \operatorname{Hom}_K(V_3, W) \xrightarrow{\circ f_2} \operatorname{Hom}_K(V_2, W) \xrightarrow{\circ f_1} \operatorname{Hom}_K(V_1, W) \to 0$$

von K-Vektorräumen, deren Abbildungen durch die Komposition mit f_2 bzw. f_1 induziert werden, exakt ist.

(c) Es seien nun $U, V \subseteq W$ Untervektorräume. Zeigen Sie, dass

$$0 \to U \cap W \xrightarrow{\iota} U \times W \xrightarrow{\rho} U + W \to 0,$$

mit $\iota(x)=(x,-x)$ und $\rho(u,w)=u+w$ eine exakte Sequenz ist.