HW 9: Elliptische Kurven I

• Hand in by June 21st

Exercise 1. Prove or disprove:

- 1. The image of a morphism of affine varieties $f: X \to Y$ is a quasi-affine variety.
- 2. Let $f: X \to Y$ be a surjective morphism of connected affine curves¹. Then the fibres of f are finite.

Exercise 2. Compute the singular locus of

- 1. the affine variety X = Z(xyz) in \mathbb{A}^3 ,
- 2. the affine variety $Z(y^2 x^3 5)$, and
- 3. the projective variety $Y = Z_+(x_0^2 + x_1^2 + x_2x_3)$ in \mathbb{P}^3 .

Exercise 3. Let $n \ge 0$ be an integer. Show that \mathbb{P}^n is isomorphic to an affine variety if and only if $n = 0.^2$

Exercise 4. Let X be a smooth projective irreducible curve. Let $f: X \to \mathbb{P}^1$ be a morphism of varieties.

- 1. Show that f is either constant or surjective.
- 2. Let U be the complement of $f^{-1}\{(1:0)\}$. Assume that U is non-empty. Show that $f|_U$, seen as a map from U to $\mathbb{A}^1 = \mathbb{P}^1 \{(1:0)\}$, defines an element \tilde{f} of the field K(X) of rational functions of X.
- 3. Show that $f \mapsto \tilde{f}$ defines a bijection between K(X) and the set of morphisms $X \to \mathbb{P}^1$ whose image is not $\{(1:0)\}$.
- 4. Let $X = \mathbb{P}^1$ and let $f : X \to \mathbb{P}^1$ be an isomorphism of projective varieties. Show that there exist $a, b, c, d \in k$ such that

$$\widetilde{f} = \frac{ax+b}{cx+d}$$

where we have identified $K(\mathbb{P}^1)$ with the field of fractions of $k[x] = \mathcal{O}_{\mathbb{P}^1}(\mathbb{A}^1)$. Deduce that $\mathrm{PGL}_2(k)$ is the group of automorphisms of \mathbb{P}^1 .

Exercise 5. Show that, if X is an affine irreducible curve, then there is a surjective morphism $X \to \mathbb{P}^1$. [Hint: You may use that a non-constant morphism $X \to \mathbb{A}^1$ has open image.]

 $^{^{1}}$ An affine variety is a *curve* if all its irreducible components are one-dimensional.

²This exercise can be reformulated as follows. Let $n \ge 1$. Then there is no integer $m \ge 0$ such that \mathbb{P}^n is isomorphic to a closed subset of \mathbb{A}^m in the category of quasi-projective varieties (Vorlesung 11).