HW 12: Elliptische Kurven I

• Hand in by July 26th.

Let k be an algebraically closed field.

Exercise 1. Assume $2 \in k^{\times}$, and let *E* be the elliptic curve given by $y^2 = x^3 - x$ over *k*.

- 1. Show that the map $[i]: E \to E$ given by [i](x, y) = (-x, iy) defines an isogeny $[i]: E \to E$ and that [i] satisfies $[i]^2 + [1] = 0$ in End(E).
- 2. Compute the j-invariant of E.

Exercise 2. Let $\zeta \in \mathbb{F}_4$ denote a 3rd root of unity. Let E be the elliptic curve over $\overline{\mathbb{F}_4}$ defined by the equation $y^2 + y = x^3$. Let $f : E \to E$ be given by $f(x, y) = (\zeta x, y)$, and let $g : E \to E$ be given by $g(x, y) = (x + 1, y + x + \zeta)$

- 1. Show that f and g are automorphisms.
- 2. Show that f and g do not commute in the ring $\operatorname{End}(E)$, i.e., $f \circ g \neq g \circ f$.
- 3. Show that $\operatorname{rk}_{\mathbb{Z}}(\operatorname{End}(E)) \geq 4$.

Exercise 3. Prove or disprove:

- 1. If $k = \overline{\mathbb{F}_p}$, then there exists an elliptic curve E over k such that $\operatorname{End}(E) = \mathbb{Z}$.
- 2. If E and E' are elliptic curves over k, then there is an isogeny from E to E'.
- 3. If E is an elliptic curve over k, then the set of isomorphism classes of elliptic curves E' over k such that E is isogenous to E' is finite.