EXAM: Elliptische Kurven II

• Hand in by March 3rd.

Exercise 1. In this exercise, we let $k = \overline{\mathbb{F}_2}$.

- 1. How many k-isomorphism classes of elliptic curves which can be defined over \mathbb{F}_2 are there?
- 2. Write down (generalized) Weierstrass equations for all (isomorphism classes of) elliptic curves over k which can be defined over \mathbb{F}_2 .

Exercise 2. Let p be an odd prime number.

- 1. Show that the discriminant of the elliptic curve E_p defined by $y^2 + xy = x^3 + p$ is minimal at p. [Does E_p have nodal reduction at p?]
- 2. Show that E_3 , E_5 and E_7 have positive rank.

Exercise 3. For each integer m, let $N(m) = \#\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y^2 = x^3 + m\}$.

- 1. Is N(m) finite for all $m \in \mathbb{Z}$?
- 2. Show that N(m) can be arbitrarily large as m runs over \mathbb{Z} . [Hint: Use that there is an $m_0 \in \mathbb{Z}$ such that $y^2 = x^3 + m_0$ has positive rank.)
- 3. Use a suitable height function to show that, there is a real number c > 0 (independent of m) such that, for infinitely many integers m, the inequality $N(m) > c(\log |m|)^{1/3}$ holds.

Exercise 4. Let *E* be the elliptic curve $y^2 + y = x^3 - x^2$ over \mathbb{Q} .

- 1. Compute $E(\mathbb{Q})_{tor}$.
- 2. Show that $E(\mathbb{Q})$ has rank zero.

Exercise 5. Show that there are elliptic curves E_1 and E_2 over \mathbb{Q} such that there is an isogeny from E_1 to E_2 defined over \mathbb{Q} and $\Delta_{min}(E_1) \neq \Delta_{min}(E_2)$.

Exercise 6. Compute all solutions of the equation $y^2 = x^3 - x$ with x and y in \mathbb{Z} .

Exercise 7. Let *E* be the elliptic curve defined by $y^2 + y = x^3 - x$. Assume as given that $E(\mathbb{Q})$ has rank one.

1. Prove that $E(\mathbb{Q}) \cong \mathbb{Z}$.

- 2. Use Exercise 4 from HW6 to show that $(0,0) \in E(\mathbb{Q})$ is a generator for $E(\mathbb{Q})$.
- 3. Compute the set of solutions of the equation $y^2 + y = x^3 x$ with x and y in Z. [Hint: Let P = (0, 0). Suppose [m]P is integral. Write $m = 2^a n$ with n odd, and use Exercise 4 from HW6 to show that [n]P is integral. Use an argument as in (2) to find all possible values for n, and then do some computations to find the possible a's.]
- 4. Find all positive integers which are simultaneously the product of two consecutive positive integers and the product of three consecutive positive integers.