HW 6: Elliptische Kurven II

• Hand in by February 17th.

Exercise 1. Let *E* be an elliptic curve over \mathbb{Q} . Let *L* be a Galois extension of \mathbb{Q} of *infinite* degree. Suppose that

 $\sup\{\operatorname{rank}(E(K)) \mid K \text{ a number field contained in } L\}$

is finite.

- 1. Show that $E(L) \otimes \mathbb{Q}$ is a finite-dimensional \mathbb{Q} -vector space.
- 2. Prove that, if the torsion subgroup $E(L)_{tor}$ of E(L) is finite, then E(L) is finitely generated.

Exercise 2. Prove or disprove:

- 1. If E is an elliptic curve over \mathbb{Q} , then the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the two-dimensional \mathbb{F}_2 -vector space $E[2](\overline{\mathbb{Q}})$ is irreducible.
- 2. There is an elliptic curve E over \mathbb{Q} with good reduction at the prime 2 such that $E(\mathbb{Q})_{tor}$ is of order eight.

Exercise 3. Let E be an elliptic curve given by a Weierstrass equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

with $a_1, \ldots, a_6 \in \mathbb{Z}$. Let $P \in E(\mathbb{Q})$ be a point of infinite order. Show that, if there is an integer $m \geq 1$ with $x([m]P) \in \mathbb{Z}$, then $x(P) \in \mathbb{Z}$.