HW 4: Elliptische Kurven II

- Hand in by February 3rd

Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} in \mathbb{C}. For $\alpha \in \overline{\mathbb{Q}}$ of degree $d \geq 1$ with minimal polynomial $f_{\alpha} \in \mathbb{Q}[x]$ given by $f_{\alpha}=a_{0}+\ldots+a_{d-1} x^{d-1}+x^{d}$, we define its exponential height $H(\alpha)$ to be $\max \left(H\left(a_{0}\right), \ldots, H\left(a_{d-1}\right)\right)$. We let $h(\alpha)=\log H(\alpha)$. Extend this height function h on $\overline{\mathbb{Q}}$ to a height function on $\mathbb{P}^{1}(\overline{\mathbb{Q}})$ by setting $h(\infty)=0$. For E an elliptic curve over $\overline{\mathbb{Q}}$ given by $y^{2}=x^{3}+a x+b$ with a and b in $\overline{\mathbb{Q}}$ and for $P \in E(\overline{\mathbb{Q}}) \backslash\left\{0_{E}\right\}$, define $h(P):=h(x(P): z(P))$. Set $h\left(0_{E}\right)=0$.

Exercise 1. Prove or disprove:

1. For all $C \in \mathbb{R}$ and all $d \geq 1$, the set

$$
\left\{\alpha \in \overline{\mathbb{Q}} \mid \operatorname{dim}_{\mathbb{Q}}(\mathbb{Q}(\alpha)) \leq d \text { and } h(\alpha) \leq C\right\}
$$

is finite.
2. There are only finitely many algebraic numbers $\alpha \in \overline{\mathbb{Q}}$ with $h(\alpha)=0$.
3. If E is an elliptic curve over $\overline{\mathbb{Q}}$, then there are only finitely many points P in $E(\overline{\mathbb{Q}})$ such that $h(P)=0$.
4. There is an elliptic curve E over \mathbb{Q} such that the set of points P in $E(\mathbb{Q})$ with $\widehat{h}(P)=0$ contains precisely one element.
5. There is an elliptic curve E over \mathbb{Q} such that the set of points P in $E(\mathbb{Q})$ with $\widehat{h}(P)=0$ contains precisely two elements.

Exercise 2. Explain how to prove Mordell-Weil for elliptic curves over a number field K (in as much detail as you desire), assuming weak Mordell-Weil for E over K.

