## HW 4: Elliptische Kurven II

- Hand in by January 13th.

Exercise 1. Prove or disprove:

1. If $F$ is a field, $n \geq 1$ is an integer, $\alpha_{1}, \ldots, \alpha_{n} \in F^{\times}$are pairwise distinct, and $\left(c_{1}, \ldots, c_{n}\right) \in F^{n}$ such that, for all $k \geq 1$,

$$
c_{1} \alpha_{1}^{k}+\ldots+c_{n} \alpha_{n}^{k}=0
$$

then $c_{1}=\ldots=c_{n}=0$. [Hint: you might find the proof of the "independence of characters" VL4 useful.]
2. If $M$ is a torsion-free abelian group and $G$ is a finite abelian group acting trivially on $M$, then $\mathrm{H}^{1}(G, M)=0$.
3. If $M$ is an abelian group and $G$ is a finite abelian group, then $\mathrm{H}^{1}(G, M)$ is finite.
4. If $M$ is a finitely generated abelian group and $G$ is a finite abelian group acting on $M$, then $\mathrm{H}^{1}(G, M)$ is finite.
5. There is a $\mathbb{Z} / 2 \mathbb{Z}$-module $M$ such that all elements of $\mathrm{H}^{1}(\mathbb{Z} / 2 \mathbb{Z}, M)$ have order (precisely) three.
6. If $K \subset L$ is a Galois extension of fields and $\Omega \subset \operatorname{Gal}(L / K)$ is an open subgroup, then $\Omega$ is closed and of finite index.
7. If $p$ is a prime number, then $\mathbb{Q}_{p}$ has precisely one quadratic extension (up to isomorphism).
8. If $K$ is a number field and $A=O_{K}\left[x_{1}, \ldots, x_{n}\right]$, then $A^{\times}$is a finitely generated abelian group.
9. If $p$ is a prime number, then the abelian group $\mathbb{Z}_{p}^{\times}$is finitely generated.
10. The integral closure of $\mathbb{Z}$ in $\overline{\mathbb{Q}}$ is a Dedekind domain.
11. If $\zeta$ is a primitive 5 -th root of unity in $\mathbb{C}$ and $K=\mathbb{Q}[\zeta]$, then $1+\zeta$ is an element of $O_{K}^{\times}$ and the group generated by $1+\zeta$ in $O_{K}^{\times}$is of finite index.
12. There exist an uncountable field $k$ and an elliptic curve $E$ over $k$ such that, for all $n \geq 1$, the group $E(k) / n E(k)$ is finite.

Exercise 2. Prove or disprove:

1. There are only finitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves $E$ over $\overline{\mathbb{Q}}$ which can be defined by a Weierstrass polyomial with integer coefficients and good reduction at 5 .
2. There is an elliptic curve over $\mathbb{Q}$ with good reduction at all primes $p>3$.
3. The elliptic curve $E$ defined by $y^{2}=x^{3}+x+1$ has good reduction outside 2 and 31 , the torsion in $E(\mathbb{Q})$ is trivial, and the rank of $E(\mathbb{Q})$ is at least one.

Exercise 3. Find the group of rational torsion points on the elliptic curve $E$ given by $y^{2}=$ $x(x-1)(x+2)$.

Exercise 4. Show (explicitly) that there is an elliptic curve $E$ over $\mathbb{Q}$ such that

$$
\mathrm{H}^{1}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), E(\overline{\mathbb{Q}})[2])
$$

is infinite. [Hint: Exercise 3.]
Exercise 5. For $a \in \mathbb{Z} \backslash\{0\}$ consider the elliptic curve $E_{a}$ given by $y^{2}=x^{3}+a$. Show that $\# E(\mathbb{Q})_{\text {tor }}$ divides 6. [Hint: First try the case where $\operatorname{gcd}(a, 5)=1$. To deal with the general case, prove that, for all $p \equiv 2 \bmod 3$ with $p \nmid a$, we have $\# \widetilde{E}\left(\mathbb{F}_{p}\right)=p+1$.)

