HW 3: Elliptische Kurven II

• Hand in by December 6th.

Exercise 1. Prove or disprove:

- 1. If K and L are number fields with $O_K^* \cong O_L^*$ and $\operatorname{Cl}(K) \cong \operatorname{Cl}(L)$, then $K \cong L$.
- 2. There is an integer r such that, for all number fields K, the inequality

 $|d_K| \le r$

holds.

3. If K is a number field, then there is a finite extension L of K such that, for all ideals \mathfrak{a} of O_K , the ideal $\mathfrak{a}O_L$ is principal.

Exercise 2. Prove or disprove:

- 1. A Dedekind domain with only finitely many prime ideals is a principal ideal domain.
- 2. If A is a Dedekind domain and \mathfrak{a} is a nonzero ideal of A, then all ideals of the quotient ring A/\mathfrak{a} are principal.
- 3. Every ideal of a Dedekind domain can be generated by two elements.
- 4. An integral domain in which all nonzero ideals admit a unique factorization into prime ideals is a Dedekind domain.

Exercise 3. Let $E = (E, 0_E)$ be an elliptic curve over \mathbb{C} . Let A be the coordinate ring of the smooth affine connected curve $E - \{0\}$.

- 1. Show that A is a Dedekind domain.
- 2. Let $\operatorname{Pic}(E)$ be the Picard group of E. Let $P \neq 0_E$ be a point of E with maximal ideal m_P in A. Show that the rule $P \mapsto m_P$ (for $P \neq 0_E$) and $0_E \mapsto 0$ induces a surjective homomorphism $\phi : \operatorname{Pic}(E) \to \operatorname{Cl}(A)$ with kernel isomorphic to \mathbb{Z} .
- 3. Show that Cl(A) is not finitely generated (hence infinite).