HW 2: Elliptische Kurven II

- Hand in by November 22nd.

Exercise 1. Let $n \geq 1$, let $s \geq 1$, and let p_{1}, \ldots, p_{s} be prime numbers. Show (without appealing to Hermite's theorem) that the set of equivalence classes of irreducible polynomials $f(x)=x^{n}-a$ with $a \in \mathbb{Z}$ with good reduction outside $\left\{p_{1}, \ldots, p_{s}\right\}$ is finite.

Exercise 2. Let d be a squarefree integer with $d \neq 0,1$. Let $K=\mathbb{Q}(\sqrt{d})$ with ring of integers O_{K}.

1. Compute O_{K}^{*} for all negative d. Conclude that O_{K}^{*} is finite.
2. Show O_{K}^{*} is infinite for $d=5$.
3. Let $p \nmid 2 d$ be a prime number. Show that (p) is a prime ideal if and only if

$$
\left(\frac{d}{p}\right)=-1
$$

Exercise 3. Prove or disprove.

1. If K is a field, then the polynomial ring $K[x, y]$ in two variables is a Dedekind domain.
2. If K is a number field and \mathfrak{a} is an ideal of O_{K} such that $N(\mathfrak{a})$ is a prime number, then \mathfrak{a} is a prime ideal.
3. If $K=\mathbb{Q}(\sqrt{-5})$ and \mathfrak{p} is the ideal $(2,1+\sqrt{-5})$ in O_{K}, then \mathfrak{p} is a prime ideal, \mathfrak{p} is not a principal ideal, and \mathfrak{p}^{2} is a principal ideal.
4. Let K be a quadratic field extension of \mathbb{Q}. Let $x \in K$. Then x is integral over \mathbb{Q} if and only if $N_{K / \mathbb{Q}}(x)$ and $\operatorname{Tr}_{K / \mathbb{Q}}(x)$ are integers.

Exercise 4. Compute the class number of $\mathbb{Q}(\sqrt{-5})$.
Exercise 5. Let $d \geq 1$ be a squarefree integer such that $d \equiv 3 \bmod 4$. Show that the Pell equation $x^{2}-d y^{2}=1$ has infinitely many solutions with $x, y \in \mathbb{Z}$.

Exercise 6. Show that $1+\sqrt{2}$ is a fundamental unit in $\mathbb{Q}(\sqrt{2})$.

